Skip to main content
Log in

Polyion complex micelles to stabilize gold nanoparticles for catalytic reduction of 4-nitrophenol

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

For the reduction of 4-nitrophenol to 4-aminophenol, gold nanoparticles (AuNPs) below 10 nm have high catalytic activity. However, AuNPs in aqueous solution or organic solvents are not stable in the absence of stabilizers. Here, we describe polyion complex (PIC) micelles as the stabilizer to prepare highly dispersed AuNPs for the first time. The preparation route is very gentle, easy, and reproducible. PIC micelles-stabilized AuNPs are approximately 8 nm in size and exhibit high catalytic activity for the reduction of 4-nitrophenol. The kinetic reaction rate constant is 0.51 min−1 with a good linear relationship. On the basis of their excellent colloidal stability and catalytic activity, PIC micelles-stabilized AuNPs are greatly hoped for further applications in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu YQ, Fan L, Yang B, JZ D (2014) Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 8(5):5022–5031. https://doi.org/10.1021/nn5010974

    Article  Google Scholar 

  2. Huang DS, Yang GY, Feng XW, Lai XC, Zhao PX (2015) Triazole-stabilized gold and related noble metal nanoparticles for 4-nitrophenol reduction. New J Chem 39(6):4685–4694. https://doi.org/10.1039/c5nj00673b

    Article  Google Scholar 

  3. Wang CL, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D (2016) Highly efficient transition metal nanoparticle catalysts in aqueous solutions. Angew Chem-Int Edit 55(9):3091–3095. https://doi.org/10.1002/anie.201511305

    Article  Google Scholar 

  4. Pachon LD, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem 22(6):288–299. https://doi.org/10.1002/aoc.1382

    Article  Google Scholar 

  5. Zhao PX, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3–4):638–665. https://doi.org/10.1016/j.ccr.2012.09.002

    Article  Google Scholar 

  6. Anandkumar M, Vinothkumar G, Babu KS (2017) Synergistic effect of gold supported on redox active cerium oxide nanoparticles for the catalytic hydrogenation of 4-nitrophenol. New J Chem 41(14):6720–6729. https://doi.org/10.1039/c7nj01300k

    Article  Google Scholar 

  7. Wang YG, Mei DH, Glezakou VA, Li J, Rousseau R (2015) Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat Commun 6:8. https://doi.org/10.1038/ncomms7511

    Google Scholar 

  8. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3(6):489–492. https://doi.org/10.1038/nchem.1048

    Article  Google Scholar 

  9. Corma A, Concepcion P, Boronat M, Sabater MJ, Navas J, Yacaman MJ, Larios E, Posadas A, Lopez-Quintela MA, Buceta D, Mendoza E, Guilera G, Mayoral A (2013) Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat Chem 5(9):775–781. https://doi.org/10.1038/nchem.1721

    Article  Google Scholar 

  10. Zhou M, Zeng CJ, Chen YX, Zhao S, Sfeir MY, Zhu MZ, Jin RC (2016) Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat Commun 7:7. https://doi.org/10.1038/ncomms13240

    Google Scholar 

  11. Yang HL, Li SW, Zhang XY, Wang XY, Ma JT (2014) Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. J Mater Chem A 2(30):12060–12067. https://doi.org/10.1039/c4ta01513d

    Article  Google Scholar 

  12. Agrawal G, Schurings MP, van Rijn P, Pich A (2013) Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process. J Mater Chem A 1(42):13244–13251. https://doi.org/10.1039/c3ta12370g

    Article  Google Scholar 

  13. DM H, Huang YP, Liu H, Wang H, Wang SG, Shen MW, Zhu MF, Shi X (2014) The assembly of dendrimer-stabilized gold nanoparticles onto electrospun polymer nanofibers for catalytic applications. J Mater Chem A 2(7):2323–2332. https://doi.org/10.1039/c3ta13966b

    Article  Google Scholar 

  14. Le Droumaguet B, Poupart R, Grande D (2015) “Clickable” thiol-functionalized nanoporous polymers: from their synthesis to further adsorption of gold nanoparticles and subsequent use as efficient catalytic supports. Polym Chem 6(47):8105–8111. https://doi.org/10.1039/c5py01161b

    Article  Google Scholar 

  15. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16. https://doi.org/10.1007/s11095-006-9132-0

    Article  Google Scholar 

  16. Chen X, Zhao DY, An YL, Zhang Y, Cheng J, Wang BL, Shi LQ (2008) Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles. J Colloid Interface Sci 322(2):414–420. https://doi.org/10.1016/j.jcis.2008.03.029

    Article  Google Scholar 

  17. Yuan WZ, Zhao ZD, Yuan JY, SY G, Zhang FB, Xie XM, Ren J (2011) Synthesis of pH- and temperature-responsive chitosan-graft-poly 2-(N,N-dimethylamino) ethyl methacrylate copolymer and gold nanoparticle stabilization by its micelles. Polym Int 60(2):194–201. https://doi.org/10.1002/pi.2926

    Article  Google Scholar 

  18. Alexandridis P, Tsianou M (2011) Block copolymer-directed metal nanoparticle morphogenesis and organization. Eur Polym J 47(4):569–583. https://doi.org/10.1016/j.eurpolymj.2010.10.021

    Article  Google Scholar 

  19. Dai Y, Zhang XJ, Zhuo RX (2016) Amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(E-caprolactone): synthesis, self-assembly and application as stabilizer of platinum nanoparticles. Polym Int 65(6):691–697. https://doi.org/10.1002/pi.5118

    Article  Google Scholar 

  20. Dai Y, Ren T, Wang Y, Zhang XJ (2017) The synergistic effect of nitrogen atoms and triblock structure on stabilizing gold nanoparticles for catalytic reduction of 4-nitrophenol. Gold Bull 50(2):123–129. https://doi.org/10.1007/s13404-017-0204-1

    Article  Google Scholar 

  21. Dai Y, Yu P, Zhang XJ, Zhuo RX (2016) Gold nanoparticles stabilized by amphiphilic hyperbranched polymers for catalytic reduction of 4-nitrophenol. J Cata 337:65–71. https://doi.org/10.1016/j.jcat.2016.01.014

    Article  Google Scholar 

  22. Dai Y, Li Y, Wang SP (2015) ABC triblock copolymer-stabilized gold nanoparticles for catalytic reduction of 4-nitrophenol. J Cata 329:425–430. https://doi.org/10.1016/j.jcat.2015.06.006

    Article  Google Scholar 

  23. Dai Y, Wang HQ, Zhang XJ (2017) Polyion complex micelles prepared by self-assembly of block-graft polycation and hyperbranched polyanion. J Nanopart Res 19(9):298. https://doi.org/10.1007/s11051-017-3997-1

    Article  Google Scholar 

  24. Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced Raman scattering. Langmuir 24(14):7178–7183. https://doi.org/10.1021/la800733x

    Article  Google Scholar 

  25. Zhang AQ, Cai LJ, Sui L, Qian DJ, Chen M (2013) Reducing properties of polymers in the synthesis of noble metal nanoparticles. Polym Rev 53(2):240–276. https://doi.org/10.1080/15583724.2013.776587

    Article  Google Scholar 

  26. Liu Y, Xu L, Liu XY, Cao MN (2016) Hybrids of gold nanoparticles with core-shell hyperbranched polymers: synthesis, characterization, and their high catalytic activity for reduction of 4-nitrophenol. Catalysts 6(1):14. https://doi.org/10.3390/catal6010003

    Article  Google Scholar 

  27. Liu Y, Fan Y, Yuan Y, Chen Y, Cheng F, Jiang SC (2012) Amphiphilic hyperbranched copolymers bearing a hyperbranched core and a dendritic shell as novel stabilizers rendering gold nanoparticles with an unprecedentedly long lifetime in the catalytic reduction of 4-nitrophenol. J Mater Chem 22(39):21173–21182. https://doi.org/10.1039/c2jm34445a

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 51703209 and 21603196), the Natural Science Foundation of Hubei Province (No. 2017CFB217), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUG170601 and CUGL170406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Ren, T., Wang, Y. et al. Polyion complex micelles to stabilize gold nanoparticles for catalytic reduction of 4-nitrophenol. Gold Bull 51, 21–26 (2018). https://doi.org/10.1007/s13404-017-0225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-017-0225-9

Keywords

Navigation