Protein arginine methyltransferase 5: a potential cancer therapeutic target

Abstract

Background

PRMT5 is a type II protein arginine methyltransferase that methylates histone or non-histone proteins. Arginine methylation by PRMT5 has been implicated in gene transcription, ribosome biogenesis, RNA transport, pre-mRNA splicing and signal transduction. High expression of PRMT5 has been observed in various cancers and PRMT5 overexpression has been reported to improve cancer cell survival, proliferation, migration and metabolism and to inhibit cancer cell apoptosis. In addition, PRMT5 has been found to be required for cancer stem cell survival, self-renewal and differentiation. Several microRNAs have been shown to regulate PRMT5 expression. As PRMT5 has oncogene-like properties, several PRMT5 inhibitors have been used to explore their efficacy as potential drugs for different types of cancer, and three of them are now being tested in clinical trials.

Conclusions

In this review, we summarize current knowledge on the role of PRMT5 in cancer development and progression, including its functions and underlying mechanisms. In addition, we highlight the rapid development of PRMT5 inhibitors and summarize ongoing clinical trials for cancer therapy. By affecting both tumor cells and the tumor microenvironment, PRMT5 inhibitors may serve as effective anti-cancer agents, especially when combined with immune therapies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Not applicable.

References

  1. 1.

    H.P. Mohammad, O. Barbash, C.L. Creasy, Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403–418 (2019)

    CAS  PubMed  Google Scholar 

  2. 2.

    G.S. Baldwin, P.R. Carnegie, Specific enzymic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science 171, 579–581 (1971)

    CAS  PubMed  Google Scholar 

  3. 3.

    S. Brostoff, E.H. Eylar, Localization of methylated arginine in the A1 protein from myelin. Proc. Natl. Acad. Sci. U. S. A. 68, 765–769 (1971)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    J. Jarrold, C.C. Davies, PRMTs and arginine methylation: Cancer’s best-kept secret? Trends Mol. Med. 25, 993–1009 (2019)

    CAS  PubMed  Google Scholar 

  5. 5.

    N. Stopa, J.E. Krebs, D. Shechter, The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell. Mol. Life Sci. 72, 2041–2059 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    X.J. Ma, Q. Lu, M. Grunstein, A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae. Genes Dev. 10, 1327–1340 (1996)

    CAS  PubMed  Google Scholar 

  7. 7.

    B.P. Pollack, S.V. Kotenko, W. He, L.S. Izotova, B.L. Barnoski, S. Pestka, The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. J. Biol. Chem. 274, 31531–31542 (1999)

    CAS  PubMed  Google Scholar 

  8. 8.

    S. Antonysamy, Z. Bonday, R.M. Campbell, B. Doyle, Z. Druzina, T. Gheyi, B. Han, L.N. Jungheim, Y. Qian, C. Rauch, M. Russell, J.M. Sauder, S.R. Wasserman, K. Weichert, F.S. Willard, A. Zhang, S. Emtage, Crystal structure of the human PRMT5:MEP50 complex. Proc. Natl. Acad. Sci. U. S. A. 109, 17960–17965 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    M.C. Ho, C. Wilczek, J.B. Bonanno, L. Xing, J. Seznec, T. Matsui, L.G. Carter, T. Onikubo, P.R. Kumar, M.K. Chan, M. Brenowitz, R.H. Cheng, U. Reimer, S.C. Almo, D. Shechter, Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One 8, e57008 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    A. Di Lorenzo, M.T. Bedford, Histone arginine methylation. FEBS Lett. 585, 2024–2031 (2011)

    PubMed  Google Scholar 

  11. 11.

    S.K. Kota, C. Roening, N. Patel, S.B. Kota, R. Baron, PRMT5 inhibition promotes osteogenic differentiation of mesenchymal stromal cells and represses basal interferon stimulated gene expression. Bone 117, 37–46 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    A. Scaglione, J. Patzig, J. Liang, R. Frawley, J. Bok, A. Mela, C. Yattah, J. Zhang, S.X. Teo, T. Zhou, S. Chen, E. Bernstein, P. Canoll, E. Guccione, P. Casaccia, PRMT5-mediated regulation of developmental myelination. Nat. Commun. 9, 2840 (2018)

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    W.W. Tee, M. Pardo, T.W. Theunissen, L. Yu, J.S. Choudhary, P. Hajkova, M.A. Surani, Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev. 24, 2772–2777 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    K. Chiang, A.E. Zielinska, A.M. Shaaban, M.P. Sanchez-Bailon, J. Jarrold, T.L. Clarke, J. Zhang, A. Francis, L.J. Jones, S. Smith, O. Barbash, E. Guccione, G. Farnie, M.J. Smalley, C.C. Davies, PRMT5 is a critical regulator of breast cancer stem cell function via histone methylation and FOXP1 expression. Cell Rep. 21, 3498–3513 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    S.S. Tarighat, R. Santhanam, D. Frankhouser, H.S. Radomska, H. Lai, M. Anghelina, H. Wang, X. Huang, L. Alinari, A. Walker, M.A. Caligiuri, C.M. Croce, L. Li, R. Garzon, C. Li, R.A. Baiocchi, G. Marcucci, The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 30, 789–799 (2016)

    CAS  PubMed  Google Scholar 

  16. 16.

    S. Pal, R.A. Baiocchi, J.C. Byrd, M.R. Grever, S.T. Jacob, S. Sif, Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 26, 3558–3569 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    B. Zhang, S. Dong, R. Zhu, C. Hu, J. Hou, Y. Li, Q. Zhao, X. Shao, Q. Bu, H. Li, Y. Wu, X. Cen, Y. Zhao, Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3. Oncotarget 6, 22799–22811 (2015)

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    R.S. Blanc, S. Richard, Arginine methylation: The coming of age. Mol. Cell 65, 8–24 (2017)

    CAS  PubMed  Google Scholar 

  19. 19.

    J.Y. Fong, L. Pignata, P.A. Goy, K.C. Kawabata, S.C. Lee, C.M. Koh, D. Musiani, E. Massignani, A.G. Kotini, A. Penson, C.M. Wun, Y. Shen, M. Schwarz, D.H. Low, A. Rialdi, M. Ki, H. Wollmann, S. Mzoughi, F. Gay, C. Thompson, T. Hart, O. Barbash, G.M. Luciani, M.M. Szewczyk, B.J. Wouters, R. Delwel, E.P. Papapetrou, D. Barsyte-Lovejoy, C.H. Arrowsmith, M.D. Minden, J. Jin, A. Melnick, T. Bonaldi, O. Abdel-Wahab, E. Guccione, Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36, 194-209 e9 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    M. Jansson, S.T. Durant, E.C. Cho, S. Sheahan, M. Edelmann, B. Kessler, N.B. La Thangue, Arginine methylation regulates the p53 response. Nat. Cell Biol. 10, 1431–1439 (2008)

    CAS  PubMed  Google Scholar 

  21. 21.

    X. Lu, T.M. Fernando, C. Lossos, N. Yusufova, F. Liu, L. Fontan, M. Durant, H. Geng, J. Melnick, Y. Luo, F. Vega, V. Moy, G. Inghirami, S. Nimer, A.M. Melnick, I.S. Lossos, PRMT5 interacts with the BCL6 oncoprotein and is required for germinal center formation and lymphoma cell survival. Blood 132, 2026–2039 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    D. Musiani, J. Bok, E. Massignani, L. Wu, T. Tabaglio, M.R. Ippolito, A. Cuomo, U. Ozbek, H. Zorgati, U. Ghoshdastider, R.C. Robinson, E. Guccione, T. Bonaldi, Proteomics profiling of arginine methylation defines PRMT5 substrate specificity. Sci. Signal. 12, eaat8388 (2019)

    CAS  PubMed  Google Scholar 

  23. 23.

    H. Shailesh, Z.Z. Zakaria, R. Baiocchi, S. Sif, Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 9, 36705–36718 (2018)

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Y. Yang, M.T. Bedford, Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 13, 37–50 (2013)

    CAS  PubMed  Google Scholar 

  25. 25.

    P.P. Coltri, M.G.P. Dos Santos, G. H. G. da Silva, Splicing and cancer: Challenges and opportunities. Wiley Interdiscip. Rev.  RNA 10, e1527 (2019)

  26. 26.

    A.B. Prusty, R. Meduri, B.K. Prusty, J. Vanselow, A. Schlosser, U. Fischer, Impaired spliceosomal UsnRNP assembly leads to Sm mRNA down-regulation and Sm protein degradation. J. Cell Biol. 216, 2391–2407 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    C.M. Koh, M. Bezzi, D.H. Low, W.X. Ang, S.X. Teo, F.P. Gay, M. Al-Haddawi, S.Y. Tan, M. Osato, A. Sabo, B. Amati, K.B. Wee, E. Guccione, MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015)

    CAS  PubMed  Google Scholar 

  28. 28.

    C.J. Braun, M. Stanciu, P.L. Boutz, J.C. Patterson, D. Calligaris, F. Higuchi, R. Neupane, S. Fenoglio, D.P. Cahill, H. Wakimoto, N.Y.R. Agar, M.B. Yaffe, P.A. Sharp, M.T. Hemann, J.A. Lees, Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411-426 e11 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    M. Rengasamy, F. Zhang, A. Vashisht, W.M. Song, F. Aguilo, Y. Sun, S. Li, W. Zhang, B. Zhang, J.A. Wohlschlegel, M.J. Walsh, The PRMT5/WDR77 complex regulates alternative splicing through ZNF326 in breast cancer. Nucleic Acids Res. 45, 11106–11120 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    S.V. Gerhart, W.A. Kellner, C. Thompson, M.B. Pappalardi, X.P. Zhang, R. Montes de Oca, E. Penebre, K. Duncan, A. Boriack-Sjodin, B. Le, C. Majer, M.T. McCabe, C. Carpenter, N. Johnson, R.G. Kruger, O. Barbash, Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Sci Rep 8, 9711 (2018)

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    B.M. Lorton, D. Shechter, Cellular consequences of arginine methylation. Cell. Mol. Life Sci. 76, 2933–2956 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    A. Uzdensky, S. Demyanenko, M. Bibov, S. Sharifulina, O. Kit, Y. Przhedetski, V. Pozdnyakova, Expression of proteins involved in epigenetic regulation in human cutaneous melanoma and peritumoral skin. Tumour Biol. 35, 8225–8233 (2014)

    CAS  PubMed  Google Scholar 

  33. 33.

    T.L. Clarke, M.P. Sanchez-Bailon, K. Chiang, J.J. Reynolds, J. Herrero-Ruiz, T.M. Bandeiras, P.M. Matias, S.L. Maslen, J.M. Skehel, G.S. Stewart, C.C. Davies, PRMT5-dependent methylation of the TIP60 coactivator RUVBL1 is a key regulator of homologous recombination. Mol. Cell 65, 900-916 e7 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    I. Rehman, S.M. Basu, S.K. Das, S. Bhattacharjee, A. Ghosh, Y. Pommier, B.B. Das, PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res. 46, 5601–5617 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    P.J. Hamard, G.E. Santiago, F. Liu, D.L. Karl, C. Martinez, N. Man, A.K. Mookhtiar, S. Duffort, S. Greenblatt, R.E. Verdun, S.D. Nimer, PRMT5 regulates DNA repair by controlling the alternative splicing of histone-modifying enzymes. Cell. Rep. 24, 2643–2657 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    E.C. Cho, S. Zheng, S. Munro, G. Liu, S.M. Carr, J. Moehlenbrink, Y.C. Lu, L. Stimson, O. Khan, R. Konietzny, J. McGouran, A.S. Coutts, B. Kessler, D.J. Kerr, N.B. Thangue, Arginine methylation controls growth regulation by E2F-1. EMBO J. 31, 1785–1797 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    D. Hu, M. Gur, Z. Zhou, A. Gamper, M.C. Hung, N. Fujita, L. Lan, I. Bahar, Y. Wan, Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat. Commun. 6, 8419 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    H. Jiang, Y. Zhu, Z. Zhou, J. Xu, S. Jin, K. Xu, H. Zhang, Q. Sun, J. Wang, J. Xu, PRMT5 promotes cell proliferation by inhibiting BTG2 expression via the ERK signaling pathway in hepatocellular carcinoma. Cancer Med. 7, 869–882 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    J. Chung, V. Karkhanis, R.A. Baiocchi, S. Sif, Protein arginine methyltransferase 5 (PRMT5) promotes survival of lymphoma cells via activation of WNT/beta-catenin and AKT/GSK3beta proliferative signaling. J. Biol. Chem. 294, 7692–7710 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    B. Holmes, A. Benavides-Serrato, J.T. Saunders, K.A. Landon, A.J. Schreck, R.N. Nishimura, J. Gera, The protein arginine methyltransferase PRMT5 confers therapeutic resistance to mTOR inhibition in glioblastoma. J. Neurooncol. 145, 11–22 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    S. AbuHammad, C. Cullinane, C. Martin, Z. Bacolas, T. Ward, H. Chen, A. Slater, K. Ardley, L. Kirby, K.T. Chan, N. Brajanovski, L.K. Smith, A.D. Rao, E.J. Lelliott, M. Kleinschmidt, I.A. Vergara, A.T. Papenfuss, P. Lau, P. Ghosh, S. Haupt, Y. Haupt, E. Sanij, G. Poortinga, R.B. Pearson, H. Falk, D.J. Curtis, P. Stupple, M. Devlin, I. Street, M.A. Davies, G.A. McArthur, K.E. Sheppard, Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma. Proc. Natl. Acad. Sci. U. S. A. 116, 17990–18000 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    L. Wu, X. Yang, X. Duan, L. Cui, G. Li, Exogenous expression of marine lectins DlFBL and SpRBL induces cancer cell apoptosis possibly through PRMT5-E2F-1 pathway. Sci. Rep. 4, 4505 (2014)

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    M.A. Powers, M.M. Fay, R.E. Factor, A.L. Welm, K.S. Ullman, Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res. 71, 5579–5587 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    G. Hu, X. Wang, Y. Han, P. Wang, Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis. EXCLI J. 17, 1157–1166 (2018)

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Z. Hou, H. Peng, K. Ayyanathan, K.P. Yan, E.M. Langer, G.D. Longmore, F.J. Rauscher III, The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol. Cell. Biol. 28, 3198–3207 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    M. Kanda, D. Shimizu, T. Fujii, H. Tanaka, M. Shibata, N. Iwata, M. Hayashi, D. Kobayashi, C. Tanaka, S. Yamada, G. Nakayama, H. Sugimoto, M. Koike, M. Fujiwara, Y. Kodera, Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer. Int. J. Oncol. 49, 1195–1202 (2016)

    CAS  PubMed  Google Scholar 

  47. 47.

    J. Zhang, Q. Liu, L. Qiao, P. Hu, G. Deng, N. Liang, J. Xie, H. Luo, J. Zhang, Novel role of granulocyte-macrophage colony-stimulating factor: antitumor effects through inhibition of epithelial-to-mesenchymal transition in esophageal cancer. Onco Targets Ther. 10, 2227–2237 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    S.H. Shin, G.Y. Lee, M. Lee, J. Kang, H.W. Shin, Y.S. Chun, J.W. Park, Aberrant expression of CITED2 promotes prostate cancer metastasis by activating the nucleolin-AKT pathway. Nat. Commun. 9, 4113 (2018)

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    C.M. Sun, G.M. Zhang, H.N. Qian, S.J. Cheng, M. Wang, M. Liu, D. Li, MiR-1266 suppresses the growth and metastasis of prostate cancer via targeting PRMT5. Eur. Rev. Med. Pharmacol. Sci. 23, 6436–6444 (2019)

    PubMed  Google Scholar 

  50. 50.

    X. Li, M. Wenes, P. Romero, S.C. Huang, S.M. Fendt, P.C. Ho, Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 16, 425–441 (2019)

    CAS  PubMed  Google Scholar 

  51. 51.

    M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    W.W. Tsai, S. Niessen, N. Goebel, J.R. Yates 3rd., E. Guccione, M. Montminy, PRMT5 modulates the metabolic response to fasting signals. Proc. Natl. Acad. Sci. U. S. A. 110, 8870–8875 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Y. Qin, Q. Hu, J. Xu, S. Ji, W. Dai, W. Liu, W. Xu, Q. Sun, Z. Zhang, Q. Ni, B. Zhang, X. Yu, X. Xu, PRMT5 enhances tumorigenicity and glycolysis in pancreatic cancer via the FBW7/cMyc axis. Cell. Commun. Signal. 17, 30 (2019)

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    M.J. Lukey, W.P. Katt, R.A. Cerione, Targeting amino acid metabolism for cancer therapy. Drug Discov. Today. 22, 796–804 (2017)

    CAS  PubMed  Google Scholar 

  55. 55.

    G.V. Kryukov, F.H. Wilson, J.R. Ruth, J. Paulk, A. Tsherniak, S.E. Marlow, F. Vazquez, B.A. Weir, M.E. Fitzgerald, M. Tanaka, C.M. Bielski, J.M. Scott, C. Dennis, G.S. Cowley, J.S. Boehm, D.E. Root, T.R. Golub, C.B. Clish, J.E. Bradner, W.C. Hahn, L.A. Garraway, MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    K.J. Mavrakis, E.R. McDonald III, M.R. Schlabach, E. Billy, G.R. Hoffman, A. deWeck, D.A. Ruddy, K. Venkatesan, J. Yu, G. McAllister, M. Stump, R. deBeaumont, S. Ho, Y. Yue, Y. Liu, Y. Yan-Neale, G. Yang, F. Lin, H. Yin, H. Gao, D.R. Kipp, S. Zhao, J.T. McNamara, E.R. Sprague, B. Zheng, Y. Lin, Y.S. Cho, J. Gu, K. Crawford, D. Ciccone, A.C. Vitari, A. Lai, V. Capka, K. Hurov, J.A. Porter, J. Tallarico, C. Mickanin, E. Lees, R. Pagliarini, N. Keen, T. Schmelzle, F. Hofmann, F. Stegmeier, W.R. Sellers, Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016)

    CAS  PubMed  Google Scholar 

  57. 57.

    K. Marjon, M.J. Cameron, P. Quang, M.F. Clasquin, E. Mandley, K. Kunii, M. McVay, S. Choe, A. Kernytsky, S. Gross, Z. Konteatis, J. Murtie, M.L. Blake, J. Travins, M. Dorsch, S.A. Biller, K.M. Marks, MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell. Rep. 15, 574–587 (2016)

    CAS  PubMed  Google Scholar 

  58. 58.

    A. Hormann, B. Hopfgartner, T. Kocher, M. Corcokovic, T. Krammer, C. Reiser, G. Bader, J. Shi, K. Ehrenhofer, S. Wohrle, N. Schweifer, C.R. Vakoc, N. Kraut, M. Pearson, M. Petronczki, R.A. Neumuller, RIOK1 kinase activity is required for cell survival irrespective of MTAP status. Oncotarget 9, 28625–28637 (2018)

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    A. Fedoriw, S.R. Rajapurkar, S. O’Brien, S.V. Gerhart, L.H. Mitchell, N.D. Adams, N. Rioux, T. Lingaraj, S.A. Ribich, M.B. Pappalardi, N. Shah, J. Laraio, Y. Liu, M. Butticello, C.L. Carpenter, C. Creasy, S. Korenchuk, M.T. McCabe, C.F. McHugh, R. Nagarajan, C. Wagner, F. Zappacosta, R. Annan, N.O. Concha, R.A. Thomas, T.K. Hart, J.J. Smith, R.A. Copeland, M.P. Moyer, J. Campbell, K. Stickland, J. Mills, S. Jacques-O’Hagan, C. Allain, D. Johnston, A. Raimondi, M. Porter Scott, N. Waters, K. Swinger, A. Boriack-Sjodin, T. Riera, G. Shapiro, R. Chesworth, R.K. Prinjha, R.G. Kruger, O. Barbash, H.CR87P. Mohammad, Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss. Cancer Cell 36, 100–114 e25 (2019)

  60. 60.

    S. Beloribi-Djefaflia, S. Vasseur, F. Guillaumond, Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    L. Liu, X. Zhao, L. Zhao, J. Li, H. Yang, Z. Zhu, J. Liu, G. Huang, Arginine methylation of SREBP1a via PRMT5 promotes de novo lipogenesis and tumor growth. Cancer Res. 76, 1260–1272 (2016)

    CAS  PubMed  Google Scholar 

  62. 62.

    X. Zhang, J. Wu, C. Wu, W. Chen, R. Lin, Y. Zhou, X. Huang, The LINC01138 interacts with PRMT5 to promote SREBP1-mediated lipid desaturation and cell growth in clear cell renal cell carcinoma. Biochem. Biophys. Res. Commun. 507, 337–342 (2018)

    CAS  PubMed  Google Scholar 

  63. 63.

    Y. Jin, J. Zhou, F. Xu, B. Jin, L. Cui, Y. Wang, X. Du, J. Li, P. Li, R. Ren, J. Pan, Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J. Clin. Invest. 126, 3961–3980 (2016)

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Y.K. Banasavadi-Siddegowda, A.M. Welker, M. An, X. Yang, W. Zhou, G. Shi, J. Imitola, C. Li, S. Hsu, J. Wang, M. Phelps, J. Zhang, C.E. Beattie, R. Baiocchi, B. Kaur, PRMT5 as a druggable target for glioblastoma therapy. Neuro Oncol. 20, 753–763 (2018)

    CAS  PubMed  Google Scholar 

  65. 65.

    B.N. Zheng, C.H. Ding, S.J. Chen, K. Zhu, J. Shao, J. Feng, W.P. Xu, L.Y. Cai, C.P. Zhu, W. Duan, J. Ding, X. Zhang, C. Luo, W.F. Xie, Targeting PRMT5 activity inhibits the malignancy of hepatocellular carcinoma by promoting the transcription of HNF4alpha. Theranostics 9, 2606–2617 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    D.Q. Tan, Y. Li, C. Yang, J. Li, S.H. Tan, D.W.L. Chin, A. Nakamura-Ishizu, H. Yang, T. Suda, PRMT5 Modulates splicing for genome integrity and preserves proteostasis of hematopoietic stem cells. Cell. Rep. 26, 2316-2328 e6 (2019)

    CAS  PubMed  Google Scholar 

  67. 67.

    M. Binnewies, E.W. Roberts, K. Kersten, V. Chan, D.F. Fearon, M. Merad, L.M. Coussens, D.I. Gabrilovich, S. Ostrand-Rosenberg, C.C. Hedrick, R.H. Vonderheide, M.J. Pittet, R.K. Jain, W. Zou, T.K. Howcroft, E.C. Woodhouse, R.A. Weinberg, M.F. Krummel, Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Y. Nagai, M.Q. Ji, F. Zhu, Y. Xiao, Y. Tanaka, T. Kambayashi, S. Fujimoto, M.M. Goldberg, H. Zhang, B. Li, T. Ohtani, M.I. Greene, PRMT5 associates with the FOXP3 homomer and when disabled enhances targeted p185(erbB2/neu) tumor immunotherapy. Front. Immunol. 10, 174 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    L.M. Webb, S.A. Amici, K.A. Jablonski, H. Savardekar, A.R. Panfil, L. Li, W. Zhou, K. Peine, V. Karkhanis, E.M. Bachelder, K.M. Ainslie, P.L. Green, C. Li, R.A. Baiocchi, M. Guerau-de-Arellano, PRMT5-selective inhibitors suppress inflammatory T cell responses and experimental autoimmune encephalomyelitis. J. Immunol. 198, 1439–1451 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    M. Inoue, K. Okamoto, A. Terashima, T. Nitta, R. Muro, T. Negishi-Koga, T. Kitamura, T. Nakashima, H. Takayanagi, Arginine methylation controls the strength of gammac-family cytokine signaling in T cell maintenance. Nat. Immunol. 19, 1265–1276 (2018)

    CAS  PubMed  Google Scholar 

  71. 71.

    Y. Tanaka, Y. Nagai, M. Okumura, M.I. Greene, T. Kambayashi, PRMT5 is required for T cell survival and proliferation by maintaining cytokine signaling. Front. Immunol. 11, 621 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Y. Peng, C.M. Croce, The role of MicroRNAs in human cancer. Signal Transduct. Target Ther. 1, 15004 (2016)

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    L. Wang, S. Pal, S. Sif, Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol. Cell. Biol. 28, 6262–6277 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Y.F. Lu, X.L. Cai, Z.Z. Li, J. Lv, Y.A. Xiang, J.J. Chen, W.J. Chen, W.Y. Sun, X.M. Liu, J.B. Chen, LncRNA SNHG16 functions as an oncogene by sponging MiR-4518 and up-regulating PRMT5 expression in glioma. Cell. Physiol. Biochem. 45, 1975–1985 (2018)

    CAS  PubMed  Google Scholar 

  75. 75.

    L. Alinari, K.V. Mahasenan, F. Yan, V. Karkhanis, J.H. Chung, E.M. Smith, C. Quinion, P.L. Smith, L. Kim, J.T. Patton, R. Lapalombella, B. Yu, Y. Wu, S. Roy, A. De Leo, S. Pileri, C. Agostinelli, L. Ayers, J.E. Bradner, S. Chen-Kiang, O. Elemento, T. Motiwala, S. Majumder, J.C. Byrd, S. Jacob, S. Sif, C. Li, R.A. Baiocchi, Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation. Blood 125, 2530–2543 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    M. Bezzi, S.X. Teo, J. Muller, W.C. Mok, S.K. Sahu, L.A. Vardy, Z.Q. Bonday, E. Guccione, Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 27, 1903–1916 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Z. Li, J. Yu, L. Hosohama, K. Nee, S. Gkountela, S. Chaudhari, A.A. Cass, X. Xiao, A.T. Clark, The Sm protein methyltransferase PRMT5 is not required for primordial germ cell specification in mice. EMBO J. 34, 748–758 (2015)

    CAS  PubMed  Google Scholar 

  78. 78.

    F. Liu, G. Cheng, P.J. Hamard, S. Greenblatt, L. Wang, N. Man, F. Perna, H. Xu, M. Tadi, L. Luciani, S.D. Nimer, Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J. Clin. Invest. 125, 3532–3544 (2015)

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    E. Chan-Penebre, K.G. Kuplast, C.R. Majer, P.A. Boriack-Sjodin, T.J. Wigle, L.D. Johnston, N. Rioux, M.J. Munchhof, L. Jin, S.L. Jacques, K.A. West, T. Lingaraj, K. Stickland, S.A. Ribich, A. Raimondi, M.P. Scott, N.J. Waters, R.M. Pollock, J.J. Smith, O. Barbash, M. Pappalardi, T.F. Ho, K. Nurse, K.P. Oza, K.T. Gallagher, R. Kruger, M.P. Moyer, R.A. Copeland, R. Chesworth, K.W. Duncan, A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat. Chem. Biol. 11, 432–437 (2015)

    CAS  PubMed  Google Scholar 

  80. 80.

    S.R. Daigle, E.J. Olhava, C.A. Therkelsen, C.R. Majer, C.J. Sneeringer, J. Song, L.D. Johnston, M.P. Scott, J.J. Smith, Y. Xiao, L. Jin, K.W. Kuntz, R. Chesworth, M.P. Moyer, K.M. Bernt, J.C. Tseng, A.L. Kung, S.A. Armstrong, R.A. Copeland, V.M. Richon, R.M. Pollock, Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    D. Smil, M.S. Eram, F. Li, S. Kennedy, M.M. Szewczyk, P.J. Brown, D. Barsyte-Lovejoy, C.H. Arrowsmith, M. Vedadi, M. Schapira, Discovery of a dual PRMT5-PRMT7 inhibitor. ACS Med. Chem. Lett. 6, 408–412 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Z.Q. Bonday, G.S. Cortez, M.J. Grogan, S. Antonysamy, K. Weichert, W.P. Bocchinfuso, F. Li, S. Kennedy, B. Li, M.M. Mader, C.H. Arrowsmith, P.J. Brown, M.S. Eram, M.M. Szewczyk, D. Barsyte-Lovejoy, M. Vedadi, E. Guccione, R.M. Campbell, LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity. ACS Med. Chem. Lett. 9, 612–617 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    K. Zhu, C.S. Jiang, J. Hu, X. Liu, X. Yan, H. Tao, C. Luo, H. Zhang, Interaction assessments of the first S-adenosylmethionine competitive inhibitor and the essential interacting partner methylosome protein 50 with protein arginine methyltransferase 5 by combined computational methods. Biochem. Biophys. Res. Commun. 495, 721–727 (2018)

    CAS  PubMed  Google Scholar 

  84. 84.

    L. Prabhu, H. Wei, L. Chen, O. Demir, G. Sandusky, E. Sun, J. Wang, J. Mo, L. Zeng, M. Fishel, A. Safa, R. Amaro, M. Korc, Z.Y. Zhang, T. Lu, Adapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers. Oncotarget 8, 39963–39977 (2017)

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    D. Rasco, A. Tolcher, L.L. Siu, K. Heinhuis, S. Postel-Vinay, O. Barbash, J.L. Egger, S. Gorman, T. Horner, A. Dhar, B.E. Kremer, A phase I, open-label, dose-escalation study to investigate the safety, pharmacokinetics, pharmacodynamics, and clinical activity of GSK3326595 in subjects with solid tumors and non-Hodgkin’s lymphoma. Cancer Res. 77, supplement (2017)

  86. 86.

    D.W. Rasco, L.L. Siu, S Postel Vinay, P Martin Romano, J. Menis, F.L. Opdam, K.M. Heinhuis, J.L. Egger, S.A. Gorman, R. Parasrampuria, K. Wang, B.E. Kremer, M.M. Gounder, METEOR-1: A phase I study of GSK3326595, a first-in-class protein arginine methyltransferase 5 (PRMT5) inhibitor, in advanced solid tumours. Ann. Oncol. 30, v159 (2019)

  87. 87.

    D. Brehmer, T.F. Wu, G. Mannens, L. Beke, P. Vinken, D. Gaffney, W.M. Sun, V. Pande, J.W. Thuring, H. Millar, I. Poggesi, I. Somers, A. Boeckx, M. Parade, E. van Heerde, T. Nys, C. Yanovich, B. Herkert, T. Verhulst, M. Du Jardin, L. Meerpoel, C. Moy, G. Diels, M. Viellevoye, W. Schepens, A. Poncelet, J.T. Linders, E.C. Lawson, J.P. Edwards, D. Chetty, S. Laquerre, M. V. Lorenzi, A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models. Cancer Res. 77, supplement (2017)

  88. 88.

    T.F. Wu, H. Millar, D. Gaffney, L. Beke, G. Mannens, P. Vinken, I. Sommers, J.W. Thuring, W.M. Sun, C. Moy, V. Pande, J.G. Zhou, N. Haddish-Berhane, M. Salvati, S. Laquerre, M.V. Lorenzi, D. Brehmer, JNJ-64619178, a selective and pseudo-irreversible PRMT5 inhibitor with potent in vitro and in vivo activity, demonstrated in several lung cancer models. Cancer Res. 78, supplement (2018)

  89. 89.

    X. Li, C. Wang, H. Jiang, C. Luo, A patent review of arginine methyltransferase inhibitors (2010–2018). Expert Opin. Ther. Pat. 29, 97–114 (2019)

    CAS  PubMed  Google Scholar 

  90. 90.

    H.J. Millar, D. Brehmer, T. Verhulst, N. Haddish-Berhane, T. Greway, D. Gaffney, A. Boeckx, E. Van Heerde, T. Nys, J. Portale, U. Philippar, T.F. Wu, S. Laquerre, K. Packman, In vivo efficacy and pharmacodynamic modulation of JNJ-64619178, a selective PRMT5 inhibitor, in human lung and hematologic preclinical models. Cancer Res. 79, supplement (2019)

Download references

Funding

This study was supported by grants from the National Key R&D Program of China (2019YFA0111000), the Shanghai Science and Technology Committee (20ZR1448900), the Shanghai Healthy Committee (202040121), the National Natural Science Foundation of China (No. 81671590) and the Innovative research team of high-level local universities in Shanghai.

Author information

Affiliations

Authors

Contributions

YY wrote the manuscript. HN provided direction and reviewed and revised the manuscript. Both authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hong Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Nie, H. Protein arginine methyltransferase 5: a potential cancer therapeutic target. Cell Oncol. 44, 33–44 (2021). https://doi.org/10.1007/s13402-020-00577-7

Download citation

Keywords

  • PRMT5
  • Cancer
  • Arginine methylation
  • Regulation
  • Inhibitor therapy