Skip to main content

Advertisement

Log in

The role of TNF-α in chordoma progression and inflammatory pathways

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Chordomas are highly therapy-resistant primary bone tumors that exhibit high relapse rates and may induce local destruction. Here, we evaluated the effects of tumor necrosis factor-alpha (TNF-α) on chordoma progression and clinical outcome.

Methods

Chordoma cells were treated with TNF-α after which its short- and long-term effects were evaluated. Functional assays, qRT-PCR and microarray-based expression analyses were carried out to assess the effect of TNF-α on chemo-resistance, epithelial to mesenchymal transition (EMT), migration, invasion and cancer stem cell-like properties. Finally, relationships between TNF-α expression and clinicopathological features were assessed in a chordoma patient cohort.

Results

We found that TNF-α treatment increased the migration and invasion of chordoma cells. Also, NF-κB activation was observed along with increased EMT marker expression. In addition, enhanced tumor sphere formation and soft agar colony formation were observed, concomitantly with increased chemo-resistance and CD338 marker expression. The TNF-α and TNFR1 expression levels were found to be significantly correlated with LIF, PD-L1 and Ki67 expression levels, tumor volume and a short survival time in patients. In addition, a high neutrophil to lymphocyte ratio was found to be associated with recurrence and a decreased overall survival.

Conclusions

From our data we conclude that TNF-α may serve as a prognostic marker for chordoma progression and that tumor-promoting inflammation may be a major factor in chordoma tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.L. McMaster, A.M. Goldstein, D.M. Parry, Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet 48, 444–449 (2011)

    Article  PubMed  Google Scholar 

  2. K. Almefty, S. Pravdenkova, B.O. Colli, O. Al-Mefty, M. Gokden, Chordoma and chondrosarcoma: Similar, but quite different, skull base tumors. Cancer 110, 2457–2467 (2007)

    Article  PubMed  Google Scholar 

  3. M.L. McMaster, A.M. Goldstein, C.M. Bromley, N. Ishibe, D.M. Parry, Chordoma: Incidence and survival patterns in the United States, 1973-1995. Cancer Causes Control 12, 1–11 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. V. Ferraresi, C. Nuzzo, C. Zoccali, F. Marandino, A. Vidiri, N. Salducca, M. Zeuli, D. Giannarelli, F. Cognetti, R. Biagini, Chordoma: Clinical characteristics, management and prognosis of a case series of 25 patients. BMC Cancer 10(22) (2010)

  5. Y. Yang, X. Niu, Y. Li, W. Liu, H. Xu, Recurrence and survival factors analysis of 171 cases of sacral chordoma in a single institute. Eur Spine J 26, 1910–1916 (2017)

    Article  PubMed  Google Scholar 

  6. S. Gulluoglu, O. Turksoy, A. Kuskucu, U. Ture, O.F. Bayrak, The molecular aspects of chordoma. Neurosurg Rev 39, 185–196; discussion 196 (2016)

    Article  PubMed  Google Scholar 

  7. B.B. Aggarwal, R.V. Vijayalekshmi, B. Sung, Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin Cancer Res 15, 425–430 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. S.B. Coffelt, C.E. Lewis, L. Naldini, J.M. Brown, N. Ferrara, M. De Palma, Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176, 1564–1576 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. Egeblad, E.S. Nakasone, Z. Werb, Tumors as organs: Complex tissues that interface with the entire organism. Dev Cell 18, 884–901 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. MENINGIOMA of the cervical spinal dura with post-operative uremia and renal insufficiency, Clin Bull Univ Hosp Clevel (Ohio) 10, 12–14 (1946)

    Google Scholar 

  11. C. Murdoch, M. Muthana, S.B. Coffelt, C.E. Lewis, The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618–631 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Feng, J. Shen, Y. Gao, Y. Liao, G. Cote, E. Choy, I. Chebib, H. Mankin, F. Hornicek, Z. Duan, Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget 6, 11139–11149 (2015)

    PubMed  PubMed Central  Google Scholar 

  13. S. Scheipl, M. Barnard, L. Cottone, M. Jorgensen, D.H. Drewry, W.J. Zuercher, F. Turlais, H. Ye, A.P. Leite, J.A. Smith, A. Leithner, P. Moller, S. Bruderlein, N. Guppy, F. Amary, R. Tirabosco, S.J. Strauss, N. Pillay, A.M. Flanagan, EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol 239, 320–334 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Wajant, The role of TNF in cancer. Results Probl Cell Differ 49, 1–15 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. F. Balkwill, Tumour necrosis factor and cancer. Nat Rev Cancer 9, 361–371 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. S. Wu, C.M. Boyer, R.S. Whitaker, A. Berchuck, J.R. Wiener, J.B. Weinberg, R.C. Bast Jr., Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: Monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression. Cancer Res 53, 1939–1944 (1993)

    CAS  PubMed  Google Scholar 

  17. M.J. Chuang, K.H. Sun, S.J. Tang, M.W. Deng, Y.H. Wu, J.S. Sung, T.L. Cha, G.H. Sun, Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 99, 905–913 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. P. Bhat-Nakshatri, H. Appaiah, C. Ballas, P. Pick-Franke, R. Goulet Jr., S. Badve, E.F. Srour, H. Nakshatri, SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 10(411) (2010)

  19. N. Muthukumaran, K.E. Miletti-Gonzalez, A.K. Ravindranath, L. Rodriguez-Rodriguez, Tumor necrosis factor-alpha differentially modulates CD44 expression in ovarian cancer cells. Mol Cancer Res 4, 511–520 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. J.W. Antoon, R. Lai, A.P. Struckhoff, A.M. Nitschke, S. Elliott, E.C. Martin, L.V. Rhodes, N.S. Yoon, V.A. Salvo, B. Shan, B.S. Beckman, K.P. Nephew, M.E. Burow, Altered death receptor signaling promotes epithelial-to-mesenchymal transition and acquired chemoresistance. Sci Rep 2(539) (2012)

  21. X. Yue, L. Wu, W. Hu, The regulation of leukemia inhibitory factor. Cancer Cell Microenviron 2, e877 (2015)

    PubMed  PubMed Central  Google Scholar 

  22. S. Gulluoglu, M. Sahin, E.C. Tuysuz, C.K. Yaltirik, A. Kuskucu, F. Ozkan, F. Sahin, U. Ture, O.F. Bayrak, Leukemia inhibitory factor promotes aggressiveness of Chordoma. Oncol Res 25, 1177–1188 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  23. T. Okazaki, T. Honjo, The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27, 195–201 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. M.E. Keir, S.C. Liang, I. Guleria, Y.E. Latchman, A. Qipo, L.A. Albacker, M. Koulmanda, G.J. Freeman, M.H. Sayegh, A.H. Sharpe, Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203, 883–895 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S.Y. Tseng, M. Otsuji, K. Gorski, X. Huang, J.E. Slansky, S.I. Pai, A. Shalabi, T. Shin, D.M. Pardoll, H. Tsuchiya, B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 193, 839–846 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, P.C. Roche, J. Lu, G. Zhu, K. Tamada, V.A. Lennon, E. Celis, L. Chen, Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 8, 793–800 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. L. Zitvogel, G. Kroemer, Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 1, 1223–1225 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  28. P. Palmqvist, P. Lundberg, I. Lundgren, L. Hanstrom, U.H. Lerner, IL-1beta and TNF-alpha regulate IL-6-type cytokines in gingival fibroblasts. J Dent Res 87, 558–563 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. W. Pan, C. Yu, H. Hsuchou, Y. Zhang, A.J. Kastin, Neuroinflammation facilitates LIF entry into brain: Role of TNF. Am J Physiol Cell Physiol 294, C1436–C1442 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. S. Scheil, S. Bruderlein, T. Liehr, H. Starke, J. Herms, M. Schulte, P. Moller, Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosom Cancer 32, 203–211 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. B. Rinner, E.V. Froehlich, K. Buerger, H. Knausz, B. Lohberger, S. Scheipl, C. Fischer, A. Leithner, C. Guelly, S. Trajanoski, K. Szuhai, B. Liegl, Establishment and detailed functional and molecular genetic characterisation of a novel sacral chordoma cell line, MUG-Chor1. Int J Oncol 40, 443–451 (2012)

    CAS  PubMed  Google Scholar 

  32. R. Edgar, M. Domrachev, A.E. Lash, Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30, 207–210 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J.W. Pollard, Trophic macrophages in development and disease. Nat Rev Immunol 9, 259–270 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Mantovani, P. Allavena, A. Sica, F. Balkwill, Cancer-related inflammation. Nature 454, 436–444 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. P. Nilendu, S.C. Sarode, D. Jahagirdar, I. Tandon, S. Patil, G.S. Sarode, J.K. Pal, N.K. Sharma, Mutual concessions and compromises between stromal cells and cancer cells: Driving tumor development and drug resistance. Cell Oncol 41, 353–367 (2018)

    Article  CAS  Google Scholar 

  36. N. Eiro, L. Gonzalez, A. Martinez-Ordonez, B. Fernandez-Garcia, L.O. Gonzalez, S. Cid, F. Dominguez, R. Perez-Fernandez, F.J. Vizoso, Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol 41, 369–378 (2018)

    Article  CAS  Google Scholar 

  37. C.E. Lewis, J.W. Pollard, Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605–612 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. W.W. Lin, M. Karin, A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117, 1175–1183 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. I. Kryczek, L. Zou, P. Rodriguez, G. Zhu, S. Wei, P. Mottram, M. Brumlik, P. Cheng, T. Curiel, L. Myers, A. Lackner, X. Alvarez, A. Ochoa, L. Chen, W. Zou, B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203, 871–881 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Goswami, E. Sahai, J.B. Wyckoff, M. Cammer, D. Cox, F.J. Pixley, E.R. Stanley, J.E. Segall, J.S. Condeelis, Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65, 5278–5283 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. L.M. Nusblat, M.J. Carroll, C.M. Roth, Crosstalk between M2 macrophages and glioma stem cells. Cell Oncol 40, 471–482 (2017)

    Article  CAS  Google Scholar 

  42. M. Kumar, D.F. Allison, N.N. Baranova, J.J. Wamsley, A.J. Katz, S. Bekiranov, D.R. Jones, M.W. Mayo, NF-kappaB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS One 8, e68597 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. T. Sharifnia, M.J. Wawer, T. Chen, Q.Y. Huang, B.A. Weir, A. Sizemore, M.A. Lawlor, A. Goodale, G.S. Cowley, F. Vazquez, C.J. Ott, J.M. Francis, S. Sassi, P. Cogswell, H.E. Sheppard, T. Zhang, N.S. Gray, P.A. Clarke, J. Blagg, P. Workman, J. Sommer, F. Hornicek, D.E. Root, W.C. Hahn, J.E. Bradner, K.K. Wong, P.A. Clemons, C.Y. Lin, J.D. Kotz, S.L. Schreiber, Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med 25, 292–300 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M.M. Trucco, O. Awad, B.A. Wilky, S.D. Goldstein, R. Huang, R.L. Walker, P. Shah, V. Katuri, N. Gul, Y.J. Zhu, E.F. McCarthy, I. Paz-Priel, P.S. Meltzer, C.P. Austin, M. Xia, D.M. Loeb, A novel chordoma xenograft allows in vivo drug testing and reveals the importance of NF-kappaB signaling in chordoma biology. PLoS One 8, e79950 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. E.C. Inwald, M. Klinkhammer-Schalke, F. Hofstadter, F. Zeman, M. Koller, M. Gerstenhauer, O. Ortmann, Ki-67 is a prognostic parameter in breast cancer patients: Results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat 139, 539–552 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Verma, V. Gupta, J. Singh, M. Verma, G. Gupta, S. Gupta, R. Sen, M. Ralli, Significance of p53 and ki-67 expression in prostate cancer. Urol Ann 7, 488–493 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Wetzler, M. Talpaz, D.G. Lowe, G. Baiocchi, J.U. Gutterman, R. Kurzrock, Constitutive expression of leukemia inhibitory factor RNA by human bone marrow stromal cells and modulation by IL-1, TNF-alpha, and TGF-beta. Exp Hematol 19, 347–351 (1991)

    CAS  PubMed  Google Scholar 

  48. X. Wang, L. Yang, F. Huang, Q. Zhang, S. Liu, L. Ma, Z. You, Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184, 7–14 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R.Z. Sharaiha, K.J. Halazun, F. Mirza, J.L. Port, P.C. Lee, A.I. Neugut, N.K. Altorki, J.A. Abrams, Elevated preoperative neutrophil:Lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Ann Surg Oncol 18, 3362–3369 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  50. H. Shimada, N. Takiguchi, O. Kainuma, H. Soda, A. Ikeda, A. Cho, A. Miyazaki, H. Gunji, H. Yamamoto, M. Nagata, High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer 13, 170–176 (2010)

    Article  PubMed  Google Scholar 

  51. L. Benevides, D.M. da Fonseca, P.B. Donate, D.G. Tiezzi, D.D. De Carvalho, J.M. de Andrade, G.A. Martins, J.S. Silva, IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res 75, 3788–3799 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. S.B. Coffelt, M.D. Wellenstein, K.E. de Visser, Neutrophils in cancer: Neutral no more. Nat Rev Cancer 16, 431–446 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kadir Caner Akdemir for assistance in evaluating the microarray data using ingenuity pathway analysis and Utku Ozbey for help with Western blotting. We also thank Julie Yamamoto for her editorial assistance. This study was supported by TÜBİTAK (grant number: 112S485) and Yeditepe University Hospital.

Funding

This study was supported by TÜBİTAK (grant number: 112S485) and Yeditepe University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Faruk Bayrak.

Ethics declarations

The study was approved by the institutional review board of Yeditepe University Hospital (IRB 98-3943B and 101-4621B), and written informed consent was obtained from all participants. The study was performed in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1

General summary of ingenuity pathway analysis for one week TNF-α-treated chordoma cells versus control cells. (PNG 112 kb)

High Resolution (TIF 132 kb)

Supplementary Fig. 2

General summary of the ingenuity pathway analysis for LT-TNF-treated chordoma cells versus control cells. (PNG 119 kb)

High Resolution (TIF 142 kb)

Supplementary Fig. 3

IPA causal networks generated for long- and short-term-treated chordoma samples. TNF-α treatment elevated pathways relevant to tumor-promoting inflammation and tumor progression in chordoma cells A) Legend for the created causal prediction networks. B) Gene expression networks related to elevated inflammatory response with functions such as the activation of antigen-presenting cells, myeloid cell recruitment of phagocytes and the immune response of short-term TNF-α-treated cells. C) Gene expression networks related to the pathways of cellular movement, migration, and invasion and leukocyte infiltration in short-term TNF-α-treated cells. D) Gene expression networks related to macrophage recruitment in short-term TNF-α-treated cells. E) Gene expression networks related to tumor cell invasion and endothelial branching in LT-TNFα samples. F) Gene expression networks related to cellular movement in LT-TNFα samples. G) Gene expression networks related to the downstream VEGFA gene network in LT-TNFα-treated cells. (PDF 877 kb)

Supplementary Fig. 4

Immunohistochemical (IHC) TNFand TNFR1 staining of chordoma tissues. Representative images showing the low, moderate and high expression of both TNF-α and TNFR1 in chordoma tissues. Scale bar =100 μm. (PNG 596 kb)

High Resolution (TIF 848 kb)

Supplementary Table 1

(DOCX 14 kb)

Supplementary Table 2

(DOCX 14 kb)

Supplementary Table 3

(DOC 59 kb)

Supplementary Table 4

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulluoglu, S., Tuysuz, E.C., Sahin, M. et al. The role of TNF-α in chordoma progression and inflammatory pathways. Cell Oncol. 42, 663–677 (2019). https://doi.org/10.1007/s13402-019-00454-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00454-y

Keywords

Navigation