Skip to main content

Advertisement

Log in

Analysis of functional hub genes identifies CDC45 as an oncogene in non-small cell lung cancer - a short report

  • Short Communication
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Hub genes are good molecular candidates for targeted cancer therapy. As yet, however, there is little information on the clinical implications and functional characteristics of hub genes in the development of non-small cell lung cancer (NSCLC). In this study, we set out to analyze the role of hub genes in NSCLC.

Methods

We performed weighted gene co-expression network analysis (WGCNA) to analyze gene networks during NSCLC development using transcriptomic data from normal, pre-cancer and cancer tissues. Both in vitro and in vivo expression knockdown assays were used to evaluate the biological function of candidate hub gene CDC45 (cell division cycle 45) in NSCLC.

Results

We identified 14 gene networks associated with NSCLC development, in which two modules (turquoise and green) correlated with tumorigenesis most positively and negatively, respectively. Gene enrichment analysis showed that the turquoise module was associated with cell cycle/mitosis, and that the green module was associated with development/morphogenesis. We found that the expression levels of the hub genes CDC45, CDCA5, GINS2, RAD51 and TROAP in the turquoise module increased gradually during tumorigenesis, whereas those of MAGI2-AS3 and RBMS3 in the green module decreased during tumorigenesis. Functionally, we found that expression knockdown of CDC45 inhibited NSCLC cell proliferation both in vitro and in vivo, and arrested the cells in the G2/M phase of the cell cycle, supporting an oncogenic role of CDC45.

Conclusion

Through gene co-expression network analysis and subsequent functional analyses we identified hub gene CDC45 as a putative novel therapeutic target in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  PubMed  Google Scholar 

  2. R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013)

    Article  PubMed  Google Scholar 

  3. M. Yousefi, T. Bahrami, A. Salmaninejad, R. Nosrati, P. Ghaffari and S.H. Ghaffari, Lung cancer-associated brain metastasis: Molecular mechanisms and therapeutic options

  4. P. Langfelder, S. Horvath, WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.H. Fridman, F. Pages, Z. Trajanoski, J. Galon, ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. B. Budke, W. Lv, A.P. Kozikowski, P.P. Connell, Recent developments using small molecules to target RAD51: How to best modulate RAD51 for anticancer therapy? ChemMedChem 11, 2468–2473 (2016)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. N. Tokuzen, K. Nakashiro, H. Tanaka, K. Iwamoto, H. Hamakawa, Therapeutic potential of targeting cell division cycle associated 5 for oral squamous cell carcinoma. Oncotarget 7, 2343–2353 (2016)

    Article  PubMed  Google Scholar 

  8. M.H. Nguyen, J. Koinuma, K. Ueda, T. Ito, E. Tsuchiya, Y. Nakamura, Y. Daigo, Phosphorylation and activation of cell division cycle associated 5 by mitogen-activated protein kinase play a crucial role in human lung carcinogenesis. Cancer Res. 70, 5337–5347 (2010)

    Article  PubMed  CAS  Google Scholar 

  9. K. Jing, Q. Mao, P. Ma, Decreased expression of TROAP suppresses cellular proliferation, migration and invasion in gastric cancer. Mol. Med. Rep. 18, 3020–3026 (2018)

    PubMed  CAS  Google Scholar 

  10. X. Ye, H. Lv, MicroRNA-519d-3p inhibits cell proliferation and migration by targeting TROAP in colorectal cancer. Biomed. Pharmacother. 105, 879–886 (2018)

  11. A.C. Simon, V. Sannino, V. Costanzo, L. Pellegrini, Structure of human Cdc45 and implications for CMG helicase function. Nat. Commun. 7, 11638 (2016)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Y. Ye, Y.N. Song, S.F. He, J.H. Zhuang, G.Y. Wang, W. Xia, GINS2 promotes cell proliferation and inhibits cell apoptosis in thyroid cancer by regulating CITED2 and LOXL2. Cancer Gene Ther. 26, 103–113 (2019)

  13. Y.L. Shen, H.Z. Li, Y.W. Hu, L. Zheng, Q. Wang, Loss of GINS2 inhibits cell proliferation and tumorigenesis in human gliomas. CNS Neurosci. Ther. 25, 273–287 (2019)

    Article  PubMed  CAS  Google Scholar 

  14. M. Liu, H. Pan, F. Zhang, Y. Zhang, Y. Zhang, H. Xia, J. Zhu, W. Fu, X. Zhang, Identification of TNM stage-specific genes in lung adenocarcinoma by genome-wide expression profiling. Oncol. Lett. 6, 763–768 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. S. Pollok, C. Bauerschmidt, J. Sanger, H.P. Nasheuer, F. Grosse, Human Cdc45 is a proliferation-associated antigen. FEBS J. 274, 3669–3684 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. J. Sun, R. Shi, S. Zhao, X. Li, S. Lu, H. Bu, X. Ma, Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle. Tumour Biol. 39, 1010428317705342 (2017)

    PubMed  Google Scholar 

  17. J. Piao, J. Sun, Y. Yang, T. Jin, L. Chen, Z. Lin, Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis. Gene 647, 306–311 (2018)

    Article  PubMed  CAS  Google Scholar 

  18. A. Ward, K.K. Khanna, A.P. Wiegmans, Targeting homologous recombination, new pre-clinical and clinical therapeutic combinations inhibiting RAD51. Cancer Treat. Rev. 41, 35–45 (2015)

    Article  PubMed  CAS  Google Scholar 

  19. S. Horvath, B. Zhang, M. Carlson, K.V. Lu, S. Zhu, R.M. Felciano, M.F. Laurance, W. Zhao, S. Qi, Z. Chen, Y. Lee, A.C. Scheck, L.M. Liau, H. Wu, D.H. Geschwind, P.G. Febbo, H.I. Kornblum, T.F. Cloughesy, S.F. Nelson, P.S. Mischel, Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl. Acad. Sci. U. S. A. 103, 17402–17407 (2006)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research Development Plan (2016YFC0905400), the National Key Basic Research Development Plan (2014CB542006) and the CAMS Innovation Fund for Medical Sciences (2016-I2M-1-001, 2017-I2M-1-005), Beijing Municipal Science & Technology Commission (Z151100004015188).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Sun or Jie He.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jie He will handle correspondence

Electronic supplementary material

ESM 1

(XLSX 144 kb)

ESM 2

(XLSX 86 kb)

ESM 3

(XLSX 2607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, Y., Lu, Z. et al. Analysis of functional hub genes identifies CDC45 as an oncogene in non-small cell lung cancer - a short report. Cell Oncol. 42, 571–578 (2019). https://doi.org/10.1007/s13402-019-00438-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00438-y

Keywords

Navigation