Skip to main content

Advertisement

Log in

MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Chemotherapy and radiation therapy are the most common types of cancer therapy. The development of chemo/radio-resistance remains, however, a major obstacle. Altered redox balances are among of the main factors mediating therapy resistance. Therefore, redox regulatory strategies are urgently needed to overcome this problem. Recently, microRNAs have been found to act as major redox regulatory factors affecting chemo/radio-resistance. MicroRNAs play critical roles in regulating therapeutic resistance through the regulation of antioxidant enzymes, redox-sensitive signaling pathways, cancer stem cells, DNA repair mechanisms and autophagy.

Conclusions

Here, we summarize current knowledge on microRNA-mediated redox regulatory mechanisms underlying chemo/radio-resistance. This knowledge may form a basis for a better clinical management of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D.B. Longley, P.G. Johnston, Molecular mechanisms of drug resistance. J. Pathol. 205, 275–292 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. F. Perri, R. Pacelli, G. Della Vittoria Scarpati, L. Cella, M. Giuliano, F. Caponigro, S. Pepe, Radioresistance in head and neck squamous cell carcinoma: Biological bases and therapeutic implications. Head Neck 37, 763–770 (2015)

    Article  PubMed  Google Scholar 

  3. S.K. Niture, A.K. Jaiswal, Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic. Biol. Med. 57, 119–131 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. G. Frosina, DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol. Cancer Res. 7, 989–999 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. M. Dean, T. Fojo, S. Bates, Tumour stem cells and drug resistance. Nat. Rev. Cancer 5, 275–284 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. S. Chen, S.K. Rehman, W. Zhang, A. Wen, L. Yao, J. Zhang, Autophagy is a therapeutic target in anticancer drug resistance. Biochim. Biophys. Acta (BBA)-Reviews on Cancer 1806, 220–229 (2010)

  7. S.L. Lomonaco, S. Finniss, C. Xiang, A. Decarvalho, F. Umansky, S.N. Kalkanis, T. Mikkelsen, C. Brodie, The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int. J. Cancer 125, 717–722 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. V.J. Victorino, L. Pizzatti, P. Michelletti, C. Panis, Oxidative stress, redox signaling and cancer chemoresistance: Putting together the pieces of the puzzle. Curr. Med. Chem. 21, 3211–3226 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. H. Sies, Oxidative stress: Introductory remarks. Oxidative Stress 501, 1–8 (1985)

    Google Scholar 

  10. H. Sies, E. Cadenas, Oxidative stress: Damage to intact cells and organs. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 311, 617–631 (1985)

    Article  CAS  Google Scholar 

  11. A. Pakfetrat, Z. Dalirsani, S.I. Hashemy, A. Ghazi, L.V. Mostaan, K. Anvari, A.M. Pour, Evaluation of serum levels of oxidized and reduced glutathione and total antioxidant capacity in patients with head and neck squamous cell carcinoma. J. Cancer Res. Ther. 14, 428–431 (2018)

    PubMed  Google Scholar 

  12. S. Lorestani, S.I. Hashemy, M. Mojarad, M. Keyvanloo Shahrestanaki, A. Bahari, M. Asadi, F. Zahedi Avval, Increased glutathione reductase expression and activity in colorectal Cancer tissue samples: An investigational study in Mashhad, Iran. Middle East J. Cancer 9, 99–104 (2018)

    CAS  Google Scholar 

  13. A. Taheri, M.H. Tanipour, Z.K. Khorasani, B. Kiafar, P. Layegh, S.I. Hashemy, Serum protein carbonyl and total antioxidant capacity levels in pemphigus vulgaris and bullous pemphigoid. Iran J. Dermatol. 18, 156–162 (2016)

    Google Scholar 

  14. M. Sobhani, A.R. Taheri, A.H. Jafarian, S.I. Hashemy, The activity and tissue distribution of thioredoxin reductase in basal cell carcinoma. J. Cancer Res. Clin. 142, 2303–2307 (2016)

    Article  CAS  Google Scholar 

  15. S.I. Hashemy, S. Gharaei, S. Vasigh, S. Kargozar, B. Alirezaei, F.J. Keyhani, M. Amirchaghmaghi, Oxidative stress factors and C-reactive protein in patients with oral lichen planus before and 2 weeks after treatment. J. Oral Pathol. Med. 45, 35–40 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. M. Amirchaghmaghi, S.I. Hashemy, B. Alirezaei, F. Jahed Keyhani, S. Kargozar, S. Vasigh, S. Gharaei, A. Pakfetrat, Evaluation of plasma Isoprostane in patients with Oral lichen planus. J. Dent. 17, 21–25 (2016)

    Google Scholar 

  17. P. Sharma, S. Kumar, Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: Pivotal role of superoxide dismutase (SOD). Cell. Oncol. 41, 637–650 (2018)

    Article  CAS  Google Scholar 

  18. S. Banskota, S. Dahal, E. Kwon, D.Y. Kim, J.A. Kim, beta-catenin gene promoter hypermethylation by reactive oxygen species correlates with the migratory and invasive potentials of colon cancer cells. Cell. Oncol. 41, 569–580 (2018)

    Article  CAS  Google Scholar 

  19. L. Li, M. Story, R.J. Legerski, Cellular responses to ionizing radiation damage. Int. J. Radiat. Oncol. Biol. Phys. 49, 1157–1162 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. K.A. Conklin, Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness. Integr. Cancer Ther. 3, 294–300 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. S.I. Hashemy, J.S. Ungerstedt, F. Zahedi Avval, A. Holmgren, Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J. Biol. Chem. 281, 10691–10697 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. S. Pervaiz, M.V. Clement, Superoxide anion: Oncogenic reactive oxygen species? Int. J. Biochem. Cell Biol. 39, 1297–1304 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. V. Sosa, T. Moline, R. Somoza, R. Paciucci, H. Kondoh, L.L. ME, Oxidative stress and cancer: An overview. Ageing Res. Rev. 12, 376–390 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. S.A. Castaldo, J.R. Freitas, N.V. Conchinha, P.A. Madureira, The tumorigenic roles of the cellular REDOX regulatory systems. Oxidative Med. Cell. Longev. 2016, 8413032 (2016)

    Article  CAS  Google Scholar 

  25. J.E. Klaunig, L.M. Kamendulis, The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239–267 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. S.I. Hashemy, The human Thioredoxin system: Modifications and clinical applications. Iran J. Basic Med. Sci. 14, 191–204 (2011)

    CAS  Google Scholar 

  28. A.M. Pisoschi, A. Pop, The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 97, 55–74 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. B. Ramanathan, K.Y. Jan, C.H. Chen, T.C. Hour, H.J. Yu, Y.S. Pu, Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res. 65, 8455–8460 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. M. Diehn, R.W. Cho, N.A. Lobo, T. Kalisky, M.J. Dorie, A.N. Kulp, D. Qian, J.S. Lam, L.E. Ailles, M. Wong, B. Joshua, M.J. Kaplan, I. Wapnir, F.M. Dirbas, G. Somlo, C. Garberoglio, B. Paz, J. Shen, S.K. Lau, S.R. Quake, J.M. Brown, I.L. Weissman, M.F. Clarke, Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M.A. Ogasawara, H. Zhang, Redox regulation and its emerging roles in stem cells and stem-like cancer cells. Antioxid. Redox Signal. 11, 1107–1122 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. J. He, B.H. Jiang, Interplay between reactive oxygen species and MicroRNAs in Cancer. Curr. Pharmacol. Rep. 2, 82–90 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D.P. Bartel, MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. F. Corra, C. Agnoletto, L. Minotti, F. Baldassari, S. Volinia, The network of non-coding RNAs in Cancer drug resistance. Front. Oncol. 8, 327 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  35. A.K. Mueller, K. Lindner, R. Hummel, J. Haier, D.I. Watson, D.J. Hussey, MicroRNAs and their impact on radiotherapy for cancer. Radiat. Res. 185, 668–677 (2016)

  36. G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)

    Article  CAS  Google Scholar 

  37. N.L. Simone, B.P. Soule, D. Ly, A.D. Saleh, J.E. Savage, W. Degraff, J. Cook, C.C. Harris, D. Gius, J.B. Mitchell, Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4, e6377 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. T. Templin, S. Paul, S.A. Amundson, E.F. Young, C.A. Barker, S.L. Wolden, L.B. Smilenov, Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int. J. Radiat. Oncol. Biol. Phys. 80, 549–557 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Lin, C.C. Chuang, L. Zuo, Potential roles of microRNAs and ROS in colorectal cancer: Diagnostic biomarkers and therapeutic targets. Oncotarget 8, 17328–17346 (2017)

    PubMed  PubMed Central  Google Scholar 

  40. M. Kobayashi, M. Yamamoto, Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385–394 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. J.D. Hayes, M. McMahon, NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends Biochem. Sci. 34, 176–188 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. L. Zhao, M. Tang, Z. Hu, B. Yan, W. Pi, Z. Li, J. Zhang, L. Zhang, W. Jiang, G. Li, Y. Qiu, F. Hu, F. Liu, J. Lu, X. Chen, L. Xiao, Z. Xu, Y. Tao, L. Yang, A.M. Bode, Z. Dong, J. Zhou, J. Fan, L. Sun, Y. Cao, miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget 6, 15995–16018 (2015)

    PubMed  PubMed Central  Google Scholar 

  43. L. Shi, L. Wu, Z. Chen, J. Yang, X. Chen, F. Yu, F. Zheng, X. Lin, MiR-141 activates Nrf2-dependent antioxidant pathway via Down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil. Cell. Physiol. Biochem. 35, 2333–2348 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. S. Zhou, W. Ye, Y. Zhang, D. Yu, Q. Shao, J. Liang, M. Zhang, miR-144 reverses chemoresistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Am. J. Transl. Res. 8, 2992–3002 (2016)

  45. L. Shi, Z.G. Chen, L.L. Wu, J.J. Zheng, J.R. Yang, X.F. Chen, Z.Q. Chen, C.L. Liu, S.Y. Chi, J.Y. Zheng, H.X. Huang, X.Y. Lin, F. Zheng, miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac. J. Cancer Prev. 15, 10439–10444 (2014)

    Article  PubMed  Google Scholar 

  46. S.E. Gomes, D.M. Pereira, C. Roma-Rodrigues, A.R. Fernandes, P.M. Borralho, C.M.P. Rodrigues, Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells. PLoS One 13, e0191607 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Y. Cui, K. She, D. Tian, P. Zhang, X. Xin, miR-146a inhibits proliferation and enhances Chemosensitivity in epithelial ovarian Cancer via reduction of SOD2. Oncol. Res. 23, 275–282 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  48. M.A. Cortez, D. Valdecanas, X. Zhang, Y. Zhan, V. Bhardwaj, G.A. Calin, R. Komaki, D.K. Giri, C.C. Quini, T. Wolfe, H.J. Peltier, A.G. Bader, J.V. Heymach, R.E. Meyn, J.W. Welsh, Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol. Ther. 22, 1494–1503 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. C. Gao, F.H. Peng, L.K. Peng, MiR-200c sensitizes clear-cell renal cell carcinoma cells to sorafenib and imatinib by targeting heme oxygenase-1. Neoplasma 61, 680–689 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. H.C. Chen, Y.M. Jeng, R.H. Yuan, H.C. Hsu, Y.L. Chen, SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann. Surg. Oncol. 19, 2011–2019 (2012)

    Article  PubMed  Google Scholar 

  51. A. Salminen, K. Kaarniranta, A. Kauppinen, Crosstalk between oxidative stress and SIRT1: Impact on the aging process. Int. J. Mol. Sci. 14, 3834–3859 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M. Chang, L. Qiao, B. Li, J. Wang, G. Zhang, W. Shi, Z. Liu, N. Gu, Z. Di, X. Wang, Y. Tian, Suppression of SIRT6 by miR-33a facilitates tumor growth of glioma through apoptosis and oxidative stress resistance. Oncol. Rep. 38, 1251–1258 (2017)

    Article  CAS  PubMed  Google Scholar 

  53. H. Liu, X.H. Cheng, MiR-29b reverses oxaliplatin-resistance in colorectal cancer by targeting SIRT1. Oncotarget 9, 12304–12315 (2018)

    PubMed  PubMed Central  Google Scholar 

  54. B. Lian, D. Yang, Y. Liu, G. Shi, J. Li, X. Yan, K. Jin, X. Liu, J. Zhao, W. Shang, R. Zhang, miR-128 targets the SIRT1/ROS/DR5 pathway to sensitize colorectal Cancer to TRAIL-induced apoptosis. Cell. Physiol. Biochem. 49, 2151–2162 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. X. Xu, A. Wells, M.T. Padilla, K. Kato, K.C. Kim, Y. Lin, A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis 35, 2457–2466 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Z. Dong, L. Ren, L. Lin, J. Li, Y. Huang, J. Li, Effect of microRNA-21 on multidrug resistance reversal in A549/DDP human lung cancer cells. Mol. Med. Rep. 11, 682–690 (2015)

    Article  CAS  PubMed  Google Scholar 

  57. C. Lin, L. Xie, Y. Lu, Z. Hu, J. Chang, miR-133b reverses cisplatin resistance by targeting GSTP1 in cisplatin-resistant lung cancer cells. Int. J. Mol. Med. 41, 2050–2058 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Chen, J.W. Jiao, K.X. Sun, Z.H. Zong, Y. Zhao, MicroRNA-133b targets glutathione S-transferase pi expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug Des. Devel. Ther. 9, 5225–5235 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. D. Wang, N. Zhang, Y. Ye, J. Qian, Y. Zhu, C. Wang, Role and mechanisms of microRNA-503 in drug resistance reversal in HepG2/ADM human hepatocellular carcinoma cells. Mol. Med. Rep. 10, 3268–3274 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. G.K. Patel, M.A. Khan, A. Bhardwaj, S.K. Srivastava, H. Zubair, M.C. Patton, S. Singh, M. Khushman, A.P. Singh, Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br. J. Cancer 116, 609–619 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. L.E. Ailles, I.L. Weissman, Cancer stem cells in solid tumors. Curr. Opin. Biotechnol. 18, 460–466 (2007)

    Article  CAS  PubMed  Google Scholar 

  62. H.Q. Ju, Y.X. Lu, D.L. Chen, T. Tian, H.Y. Mo, X.L. Wei, J.W. Liao, F. Wang, Z.L. Zeng, H. Pelicano, M. Aguilar, W.H. Jia, R.H. Xu, Redox regulation of stem-like cells though the CD44v-xCT Axis in colorectal Cancer: Mechanisms and therapeutic implications. Theranostics 6, 1160–1175 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. B. Mateescu, L. Batista, M. Cardon, T. Gruosso, Y. de Feraudy, O. Mariani, A. Nicolas, J.P. Meyniel, P. Cottu, X. Sastre-Garau, F. Mechta-Grigoriou, miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat. Med. 17, 1627–1635 (2011)

    Article  CAS  PubMed  Google Scholar 

  64. W. Yang, Y. Shen, J. Wei, F. Liu, MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species. Oncotarget 6, 22006–22027 (2015)

    PubMed  PubMed Central  Google Scholar 

  65. S. Venkataraman, I. Alimova, R. Fan, P. Harris, N. Foreman, R. Vibhakar, MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One 5, e10748 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. X. Sun, Y. Li, M. Zheng, W. Zuo, W. Zheng, MicroRNA-223 increases the sensitivity of triple-negative breast Cancer stem cells to TRAIL-induced apoptosis by targeting HAX-1. PLoS One 11, e0162754 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. J. Liu, Q. Tang, S. Li, X. Yang, Inhibition of HAX-1 by miR-125a reverses cisplatin resistance in laryngeal cancer stem cells. Oncotarget 7, 86446–86456 (2016)

    PubMed  PubMed Central  Google Scholar 

  68. K.K. Khanna, S.P. Jackson, DNA double-strand breaks: Signaling, repair and the cancer connection. Nat. Genet. 27, 247–254 (2001)

    Article  CAS  PubMed  Google Scholar 

  69. S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. M. Kuhne, E. Riballo, N. Rief, K. Rothkamm, P.A. Jeggo, M. Lobrich, A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res. 64, 500–508 (2004)

    Article  PubMed  Google Scholar 

  71. M. Pajic, D. Froio, S. Daly, L. Doculara, E. Millar, P.H. Graham, A. Drury, A. Steinmann, C.E. de Bock, A. Boulghourjian, A. Zaratzian, S. Carroll, J. Toohey, S.A. O'Toole, A.L. Harris, F.M. Buffa, H.E. Gee, G.E. Hollway, T.J. Molloy, miR-139-5p modulates radiotherapy resistance in breast Cancer by repressing multiple gene networks of DNA repair and ROS defense. Cancer Res. 78, 501–515 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. H. Hu, X. Zhao, Z. Jin, M. Hou, Hsa-let-7g miRNA regulates the anti-tumor effects of gastric cancer cells under oxidative stress through the expression of DDR genes. J. Toxicol. Sci. 40, 329–338 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. D. Yan, W.L. Ng, X. Zhang, P. Wang, Z. Zhang, Y.Y. Mo, H. Mao, C. Hao, J.J. Olson, W.J. Curran, Y. Wang, Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One 5, e11397 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. H. Hu, L. Du, G. Nagabayashi, R.C. Seeger, R.A. Gatti, ATM is down-regulated by N-Myc-regulated microRNA-421. Proc. Natl. Acad. Sci. U. S. A. 107, 1506–1511 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  75. J. Wang, J. He, F. Su, N. Ding, W. Hu, B. Yao, W. Wang, G. Zhou, Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis. 4, e699 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. L. Song, C. Lin, Z. Wu, H. Gong, Y. Zeng, J. Wu, M. Li, J. Li, miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS One 6, e25454 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. A. Cataldo, D.G. Cheung, A. Balsari, E. Tagliabue, V. Coppola, M.V. Iorio, D. Palmieri, C.M. Croce, miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget 7, 786–797 (2016)

    Article  PubMed  Google Scholar 

  78. S. Xu, H. Huang, Y.N. Chen, Y.T. Deng, B. Zhang, X.D. Xiong, Y. Yuan, Y. Zhu, H. Huang, L. Xie, X. Liu, DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21(WAF1/CIP1). Cell Cycle 15, 2920–2930 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. P. Carotenuto, D. Zito, M.C. Previdi, M. Raj, M. Fassan, A. Lampis, F. Scalafani, A. Lanese, I. Said-Huntingford and J.C. Hahne, (AACR, 2018)

  80. A. Besse, J. Sana, R. Lakomy, L. Kren, P. Fadrus, M. Smrcka, M. Hermanova, R. Jancalek, S. Reguli, R. Lipina, M. Svoboda, P. Slampa, O. Slaby, MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response. Tumour. Biol. 37, 7719–7727 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. R.L. Liu, Y. Dong, Y.Z. Deng, W.J. Wang, W.D. Li, Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour. Biol. 36, 5011–5019 (2015)

    Article  CAS  PubMed  Google Scholar 

  82. Y.N. Shen, I.S. Bae, G.H. Park, H.S. Choi, K.H. Lee, S.H. Kim, MicroRNA-196b enhances the radiosensitivity of SNU-638 gastric cancer cells by targeting RAD23B. Biomed. Pharmacother. 105, 362–369 (2018)

    Article  CAS  PubMed  Google Scholar 

  83. M. Xiao, J. Cai, L. Cai, J. Jia, L. Xie, Y. Zhu, B. Huang, D. Jin, Z. Wang, Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J. Ovarian Res. 10, 24 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. T.H. Lai, B. Ewald, A. Zecevic, C. Liu, M. Sulda, D. Papaioannou, R. Garzon, J.S. Blachly, W. Plunkett, D. Sampath, HDAC inhibition induces MicroRNA-182, which targets RAD51 and impairs HR repair to sensitize cells to Sapacitabine in acute myelogenous leukemia. Clin. Cancer Res. 22, 3537–3549 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Y. Wang, J.W. Huang, P. Calses, C.J. Kemp, T. Taniguchi, MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res. 72, 4037–4046 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. J.W. Huang, Y. Wang, K.K. Dhillon, P. Calses, E. Villegas, P.S. Mitchell, M. Tewari, C.J. Kemp, T. Taniguchi, Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Mol. Cancer Res. 11, 1564–1573 (2013)

    Article  CAS  PubMed  Google Scholar 

  87. P. Gasparini, F. Lovat, M. Fassan, L. Casadei, L. Cascione, N.K. Jacob, S. Carasi, D. Palmieri, S. Costinean, C.L. Shapiro, K. Huebner, C.M. Croce, Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc. Natl. Acad. Sci. U. S. A. 111, 4536–4541 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. G. Antoniali, F. Serra, L. Lirussi, M. Tanaka, C. D'Ambrosio, S. Zhang, S. Radovic, E. Dalla, Y. Ciani, A. Scaloni, M. Li, S. Piazza, G. Tell, Mammalian APE1 controls miRNA processing and its interactome is linked to cancer RNA metabolism. Nat. Commun. 8, 797 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. D. Ramotar, A. Nepveu, Apurinic/apyrimidinic endonuclease 1 performs multiple roles in controlling the outcome of cancer cells toward radiation and chemotherapeutic agents. J. Rad. Cancer Res. 9, 67 (2018)

    Article  Google Scholar 

  90. J.R. Silber, M.S. Bobola, A. Blank, K.D. Schoeler, P.D. Haroldson, M.B. Huynh, D.D. Kolstoe, The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin. Cancer Res. 8, 3008–3018 (2002)

    CAS  PubMed  Google Scholar 

  91. H. Chen, X. Li, W. Li, H. Zheng, miR-130a can predict response to temozolomide in patients with glioblastoma multiforme, independently of O6-methylguanine-DNA methyltransferase. J. Transl. Med. 13, 69 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. L. Tinaburri, M. D'Errico, S. Sileno, R. Maurelli, P. Degan, A. Magenta, E. Dellambra, miR-200a modulates the expression of the DNA repair protein OGG1 playing a role in aging of primary human keratinocytes. Oxidative Med. Cell. Longev. 2018, 9147326 (2018)

    Article  CAS  Google Scholar 

  93. T. Izumi, L.R. Wiederhold, G. Roy, R. Roy, A. Jaiswal, K.K. Bhakat, S. Mitra, T.K. Hazra, Mammalian DNA base excision repair proteins: Their interactions and role in repair of oxidative DNA damage. Toxicology 193, 43–65 (2003)

    Article  CAS  PubMed  Google Scholar 

  94. H.L. Huang, Y.P. Shi, H.J. He, Y.H. Wang, T. Chen, L.W. Yang, T. Yang, J. Chen, J. Cao, W.M. Yao, G. Liu, MiR-4673 modulates paclitaxel-induced oxidative stress and loss of mitochondrial membrane potential by targeting 8-Oxoguanine-DNA Glycosylase-1. Cell. Physiol. Biochem. 42, 889–900 (2017)

    Article  CAS  PubMed  Google Scholar 

  95. Y.T. Gao, X.B. Chen, H.L. Liu, Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression. Sci. Rep. 6, 32972 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. S. Josson, S.Y. Sung, K. Lao, L.W. Chung, P.A. Johnstone, Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68, 1599–1606 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. N.M. Mazure, J. Pouyssegur, Hypoxia-induced autophagy: Cell death or cell survival? Curr. Opin. Cell. Biol. 22, 177–180 (2010)

    Article  CAS  PubMed  Google Scholar 

  98. J. Lee, S. Giordano, J. Zhang, Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem. J. 441, 523–540 (2012)

    Article  CAS  PubMed  Google Scholar 

  99. Y. Kondo, T. Kanzawa, R. Sawaya, S. Kondo, The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726–734 (2005)

    Article  CAS  PubMed  Google Scholar 

  100. A.C. Gurkan, E.D. Arisan, P.O. Yerlikaya, H. Ilhan, N.P. Unsal, Inhibition of autophagy enhances DENSpm-induced apoptosis in human colon cancer cells in a p53 independent manner. Cell. Oncol. 41, 297–317 (2018)

    Article  CAS  Google Scholar 

  101. W. Khaodee, N. Inboot, S. Udomsom, W. Kumsaiyai, R. Cressey, Glucosidase II beta subunit (GluIIbeta) plays a role in autophagy and apoptosis regulation in lung carcinoma cells in a p53-dependent manner. Cell. Oncol. 40, 579–591 (2017)

  102. X. Sui, R. Chen, Z. Wang, Z. Huang, N. Kong, M. Zhang, W. Han, F. Lou, J. Yang, Q. Zhang, X. Wang, C. He, H. Pan, Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 4, e838 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. A. Chatterjee, D. Chattopadhyay, G. Chakrabarti, miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One 9, e95716 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. X. Wu, X. Feng, X. Zhao, F. Ma, N. Liu, H. Guo, C. Li, H. Du, B. Zhang, Role of Beclin-1-mediated autophagy in the survival of pediatric leukemia cells. Cell. Physiol. Biochem. 39, 1827–1836 (2016)

    Article  CAS  PubMed  Google Scholar 

  105. X. Yang, F. Bai, Y. Xu, Y. Chen, L. Chen, Intensified Beclin-1 mediated by low expression of Mir-30a-5p promotes Chemoresistance in human small cell lung Cancer. Cell. Physiol. Biochem. 43, 1126–1139 (2017)

    Article  CAS  PubMed  Google Scholar 

  106. J. Xu, H. Huang, R. Peng, X. Ding, B. Jiang, X. Yuan, J. Xi, MicroRNA-30a increases the chemosensitivity of U251 glioblastoma cells to temozolomide by directly targeting beclin 1 and inhibiting autophagy. Exp. Ther. Med. 15, 4798–4804 (2018)

    PubMed  PubMed Central  Google Scholar 

  107. Y. Zhang, X. Meng, C. Li, Z. Tan, X. Guo, Z. Zhang, T. Xi, MiR-9 enhances the sensitivity of A549 cells to cisplatin by inhibiting autophagy. Biotechnol. Lett. 39, 959–966 (2017)

    Article  CAS  PubMed  Google Scholar 

  108. W. Li, Y. Yang, Z. Ba, S. Li, H. Chen, X. Hou, L. Ma, P. He, L. Jiang, L. Li, R. He, L. Zhang, D. Feng, MicroRNA-93 regulates hypoxia-induced autophagy by targeting ULK1. Oxidative Med. Cell. Longev. 2017, 2709053 (2017)

    Google Scholar 

  109. S.I. Rothschild, O. Gautschi, J. Batliner, M. Gugger, M.F. Fey, M.P. Tschan, MicroRNA-106a targets autophagy and enhances sensitivity of lung cancer cells to Src inhibitors. Lung Cancer 107, 73–83 (2017)

    Article  PubMed  Google Scholar 

  110. L. Hua, G. Zhu and J. Wei, MicroRNA-1 overexpression increases chemosensitivity of non-small cell lung cancer cells by inhibiting autophagy related 3-mediated autophagy. Cell. Biol. Int. (2018). https://doi.org/10.1002/cbin.10995

  111. Y. Xu, Y. An, Y. Wang, C. Zhang, H. Zhang, C. Huang, H. Jiang, X. Wang, X. Li, miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol. Rep. 29, 2019–2024 (2013)

    Article  CAS  PubMed  Google Scholar 

  112. J. Zhao, Y. Nie, H. Wang, Y. Lin, MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene 576, 828–833 (2016)

    Article  CAS  PubMed  Google Scholar 

  113. A.M. Gao, X.Y. Zhang, J.N. Hu, Z.P. Ke, Apigenin sensitizes hepatocellular carcinoma cells to doxorubic through regulating miR-520b/ATG7 axis. Chem. Biol. Interact. 280, 45–50 (2018)

    Article  CAS  PubMed  Google Scholar 

  114. H. Zhang, J. Tang, C. Li, J. Kong, J. Wang, Y. Wu, E. Xu, M. Lai, MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett. 356, 781–790 (2015)

    Article  CAS  PubMed  Google Scholar 

  115. J. Xiong, D. Wang, A. Wei, N. Ke, Y. Wang, J. Tang, S. He, W. Hu, X. Liu, MicroRNA-410-3p attenuates gemcitabine resistance in pancreatic ductal adenocarcinoma by inhibiting HMGB1-mediated autophagy. Oncotarget 8, 107500–107512 (2017)

    PubMed  PubMed Central  Google Scholar 

  116. W.W. Ren, D.D. Li, X. Chen, X.L. Li, Y.P. He, L.H. Guo, L.N. Liu, L.P. Sun, X.P. Zhang, MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy. Cell Death Dis. 9, 547 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. L. Huang, C. Hu, H. Cao, X. Wu, R. Wang, H. Lu, H. Li, H. Chen, MicroRNA-29c increases the Chemosensitivity of pancreatic Cancer cells by inhibiting USP22 mediated autophagy. Cell. Physiol. Biochem. 47, 747–758 (2018)

    Article  CAS  PubMed  Google Scholar 

  118. P.H. Chen, A.J. Liu, K.H. Ho, Y.T. Chiu, Z.H. Anne Lin, Y.T. Lee, C.M. Shih, K.C. Chen, microRNA-199a/b-5p enhance imatinib efficacy via repressing WNT2 signaling-mediated protective autophagy in imatinib-resistant chronic myeloid leukemia cells. Chem. Biol. Interact. 291, 144–151 (2018)

    Article  CAS  PubMed  Google Scholar 

  119. H. Gu, M. Liu, C. Ding, X. Wang, R. Wang, X. Wu, R. Fan, Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Med. 5, 1174–1182 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. P. Wang, J. Zhang, L. Zhang, Z. Zhu, J. Fan, L. Chen, L. Zhuang, J. Luo, H. Chen, L. Liu, Z. Chen, Z. Meng, MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 145, 1133–1143 e1112 (2013)

    Article  CAS  PubMed  Google Scholar 

  121. X. Zhang, H. Shi, S. Lin, M. Ba, S. Cui, MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol. Rep. 34, 1557–1564 (2015)

    Article  CAS  PubMed  Google Scholar 

  122. H. Liao, Y. Xiao, Y. Hu, Y. Xiao, Z. Yin, L. Liu, microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol. Lett. 10, 2055–2062 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. J. Luo, J. Chen, L. He, mir-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1. Med. Sci. Monit. 21, 4122–4129 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Q. Sun, T. Liu, Y. Yuan, Z. Guo, G. Xie, S. Du, X. Lin, Z. Xu, M. Liu, W. Wang, Q. Yuan, L. Chen, MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int. J. Cancer 136, 1003–1012 (2015)

    Article  CAS  PubMed  Google Scholar 

  125. C. Meng, Y. Liu, Y. Shen, S. Liu, Z. Wang, Q. Ye, H. Liu, X. Liu, L. Jia, MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol. Lett. 15, 1435–1440 (2018)

    PubMed  Google Scholar 

  126. W. Wang, J. Liu, Q. Wu, MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1. Eur. Rev. Med. Pharmacol. Sci. 20, 92–100 (2016)

    CAS  PubMed  Google Scholar 

  127. J. Liu, Y. Xing, L. Rong, miR-181 regulates cisplatin-resistant non-small cell lung cancer via downregulation of autophagy through the PTEN/PI3K/AKT pathway. Oncol. Rep. 39, 1631–1639 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  128. X. Du, B. Liu, X. Luan, Q. Cui, L. Li, miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy. Exp. Ther. Med. 15, 599–605 (2018)

    CAS  PubMed  Google Scholar 

  129. B. Zheng, H. Zhu, D. Gu, X. Pan, L. Qian, B. Xue, D. Yang, J. Zhou, Y. Shan, MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem. Biophys. Res. Commun. 459, 234–239 (2015)

    Article  CAS  PubMed  Google Scholar 

  130. S. Comincini, G. Allavena, S. Palumbo, M. Morini, F. Durando, F. Angeletti, L. Pirtoli, C. Miracco, microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol. Ther. 14, 574–586 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. W. Hou, L. Song, Y. Zhao, Q. Liu, S. Zhang, Inhibition of Beclin-1-mediated autophagy by MicroRNA-17-5p enhanced the Radiosensitivity of glioma cells. Oncol. Res. 25, 43–53 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  132. H.S. Gwak, T.H. Kim, G.H. Jo, Y.J. Kim, H.J. Kwak, J.H. Kim, J. Yin, H. Yoo, S.H. Lee, J.B. Park, Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS One 7, e47449 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. J.L. Hu, G.Y. He, X.L. Lan, Z.C. Zeng, J. Guan, Y. Ding, X.L. Qian, W.T. Liao, Y.Q. Ding, L. Liang, Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogene 7, 16 (2018)

    Article  CAS  Google Scholar 

  134. Z. Liu, S. Huang, Inhibition of miR-191 contributes to radiation-resistance of two lung cancer cell lines by altering autophagy activity. Cancer Cell. Int. 15, 16 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. H. Yi, B. Liang, J. Jia, N. Liang, H. Xu, G. Ju, S. Ma, X. Liu, Differential roles of miR-199a-5p in radiation-induced autophagy in breast cancer cells. FEBS Lett. 587, 436–443 (2013)

    Article  CAS  PubMed  Google Scholar 

  136. M.T. van Jaarsveld, J. Helleman, A.W. Boersma, P.F. van Kuijk, W.F. van Ijcken, E. Despierre, I. Vergote, R.H. Mathijssen, E.M. Berns, J. Verweij, J. Pothof, E.A. Wiemer, miR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene 32, 4284–4293 (2013)

    Article  CAS  PubMed  Google Scholar 

  137. N. Duru, R. Gernapudi, Y. Zhang, Y. Yao, P.K. Lo, B. Wolfson, Q. Zhou, NRF2/miR-140 signaling confers radioprotection to human lung fibroblasts. Cancer Lett. 369, 184–191 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. M.S. Joo, C.G. Lee, J.H. Koo, S.G. Kim, miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis. e899, 4 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Isaac Hashemy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Hashemy, S.I. MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol. 42, 131–141 (2019). https://doi.org/10.1007/s13402-018-00421-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-00421-z

Keywords

Navigation