Cellular Oncology

, Volume 41, Issue 2, pp 185–200 | Cite as

Role of β-catenin in cisplatin resistance, relapse and prognosis of head and neck squamous cell carcinoma

  • Souvick Roy
  • Madhabananda Kar
  • Shomereeta Roy
  • Arka Saha
  • Swatishree Padhi
  • Birendranath Banerjee
Original Paper



Head and neck squamous cell carcinoma (HNSCC) is one of the most common types of cancer in India with high incidence and rapid recurrence rates. Here, we aimed to investigate the role of β-catenin, a developmental pathway gene, in HNSCC therapy resistance, DNA damage response, recurrence and prognosis.


In total 80 HNSCC samples were included. Western blot, immunohistochemistry and qRT-PCR analyses were performed to assess β-catenin expression in the cut margin and tumor areas of each sample. Kaplan-Meier analyses were performed to correlate β-catenin expression with the survival and prognosis of HNSCC patients. In addition, chemo-resistance, DNA damage response and DNA repair capacities were evaluated in HNSCC-derived cell lines through LiCl-mediated up-regulation and siRNA-mediated silencing of β-catenin expression.


We observed β-catenin up-regulation in cut margin areas of recurrent patients compared to their corresponding tumor regions, which subsequently could be associated with poor prognosis. In addition, we found that LiCl-mediated up-regulation of β-catenin in HNSCC-derived cells led to cisplatin resistance, evasion of apoptosis, enhanced DNA repair and enhanced migration. The effects of β-catenin silencing correlated with its putative role in chemo-resistance and DNA damage response.


From our results we conclude that β-catenin may contribute to HNSCC therapy resistance and disease relapse. As such, β-catenin may be explored as a therapeutic target along with conventional therapeutics.


Head and neck squamous cell carcinoma (HNSCC) β catenin Cisplatin-resistance Disease relapse DNA damage repair and response Prognosis 



This work was supported by a grant from the Department of Atomic Energy (DAE), Board of Research for Nuclear Sciences (BRNS), Government of India, Grant Number 2013/35/45/BRNS and by the MSSB (Molecular Stress and Stem Cell Biology) group.

Compliance with ethical standard

Ethical approval

This study was approved by the institutional ethics committee of the School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT University, and was conducted according to the Helsinki declaration. The human sample collection was carried out strictly according to the institutional ethical board guidelines.

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Informed consent was obtained from all subjects or their nominees prior to participation in the study.

Supplementary material

13402_2017_365_Fig8_ESM.gif (64 kb)
Supplementary Fig. 1

Silencing of β-catenin in HCT-116 cells. (a) mRNA level expression of β-catenin in HCT-116 cells after transfected with scrambled siRNA and siRNA- β-catenin. (b) Representative western blot results and graphical representation of β-catenin expression in scrambled siRNA and siRNA-β-catenin transfected HCT-116 cells. (GIF 64 kb)

13402_2017_365_MOESM1_ESM.tif (571 kb)
High Resolution Image (TIFF 571 kb)
13402_2017_365_Fig9_ESM.gif (675 kb)
Supplementary Fig. 2

β-catenin is plays an important role in chemoresistance in HCT-116 cells. (a) Cell viability assay of parental, scrambled-siRNA transfected and siRNA-β-catenin transfected HCT-116 cells after treatment with different concentrations of cisplatin. (b,c) Determination of colony forming capacity and cell survival of parental, scrambled-siRNA and siRNA-β-catenin transfected HCT-116 cells after treatment with different concentrations of cisplatin by clonogenic assay. (d) Graphical representation of percentage apoptotic cells (Sub G0) in parental, scrambled-siRNA and siRNA-β-catenin transfected HCT-116 cells after cisplatin treatment. (e) Representative image of wound in parental, scrambled-siRNA and siRNA-β-catenin transfected cells at 0 h and 24 h after cisplatin treatment. (f) Graphical representation of percentage wound closure after 24 h of cisplatin treatment in parental, scrambled-siRNA and siRNA-β-catenin transfected HCT-116 cells. (GIF 674 kb)

13402_2017_365_MOESM2_ESM.tif (7.5 mb)
High Resolution Image (TIFF 7638 kb)
13402_2017_365_Fig10_ESM.gif (120 kb)
Supplementary Fig. 3

Silencing of β-catenin in UPCI-SCC-131 HNSCC cell line and its effect on cell cycle progression. (a) UPCI-SCC-131 cells were transfected with scrambled siRNA and siRNA- β-catenin for 48 h. mRNA expression of β-catenin in scrambled siRNA and siRNA- β-catenin transfected UPCI-SCC-131 cells . (b) Representative western blot results of β-catenin expression in scrambled siRNA and siRNA-β-catenin transfected UPCI-SCC-131 cells. (c) Graphical representation of relative protein expression of β-catenin in scrambled-siRNA and siRNA-β-catenin transfected UPCI-SCC-131 cells. (d) Representative histograms of cell cycle analysis in scrambled-siRNA transfected cells and siRNA-β-catenin transfected cells. (e) Graphical representation of percentage distribution of cells in scrambled-siRNA transfected cells and siRNA-β-catenin transfected UPCI-SCC-131 cells. (GIF 120 kb)

13402_2017_365_MOESM3_ESM.tif (1.2 mb)
High Resolution Image (TIFF 1270 kb)
13402_2017_365_MOESM4_ESM.pdf (167 kb)
Supplementary Table 1 Sequences of the primers used in this study. (PDF 166 kb)
13402_2017_365_MOESM5_ESM.pdf (16 kb)
Supplementary Table 2 Clinico-pathological characteristics of 80 HNSCC patients. (PDF 15 kb)
13402_2017_365_MOESM6_ESM.pdf (9 kb)
Supplementary Table 3 Association of co-morbidity factors with recurrence in HNSCC patients. (PDF 8 kb)


  1. 1.
    S. Padhi, A. Saha, M. Kar, C. Ghosh, A. Adhya, M. Baisakh, N. Mohapatra, S. Venkatesan, M.P. Hande, B. Banerjee, Clinico-pathological correlation of β-catenin and telomere dysfunction in head and neck squamous cell carcinoma patients. J Cancer 6, 192–202 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    P. Joshi, S. Dutta, P. Chaturvedi, S. Nair, Head and neck cancers in developing countries. Rambam Maimonides Med J 5, e0009 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    E.M. Smith, L.M. Rubenstein, T.H. Haugen, E. Hamsikova, L.P. Turek, Tobacco and alcohol use increases the risk of both HPV-associated and HPV-independent head and neck cancers. Cancer Causes Control: CCC 21, 1369–1378 (2010). CrossRefPubMedGoogle Scholar
  4. 4.
    S. Vishak, B. Rangarajan, V.D. Kekatpure, Neoadjuvant chemotherapy in oral cancers: Selecting the right patients. Indian J Med Paediatr 36, 148–153 (2015).–5851.166716 CrossRefGoogle Scholar
  5. 5.
    S. Ghuwalewala, D. Ghatak, P. Das, S. Dey, S. Sarkar, N. Alam, C.K. Panda, S. Roychoudhury, CD44(high)CD24(low) molecular signature determines the Cancer Stem Cell and EMT phenotype in Oral Squamous Cell Carcinoma. Stem Cell Res 16, 405–417 (2016). CrossRefPubMedGoogle Scholar
  6. 6.
    M. Bruggemann, C. Pott, M. Ritgen, M. Kneba, Significance of minimal residual disease in lymphoid malignancies. Acta Haematol 112, 111–119 (2004). CrossRefPubMedGoogle Scholar
  7. 7.
    S. Bhattacharyya, V. Sekar, B. Majumder, D.G. Mehrotra, S. Banerjee, A.K. Bhowmick, N. Alam, G.K. Mandal, J. Biswas, P.K. Majumder, N. Murmu, CDKN2A-p53 mediated antitumor effect of Lupeol in head and neck cancer. Cell Oncol 40, 145–155 (2017). CrossRefGoogle Scholar
  8. 8.
    I.P. Ribeiro, F. Caramelo, F. Marques, A. Domingues, M. Mesquita, L. Barroso, H. Prazeres, M.J. Juliao, I.P. Baptista, A. Ferreira, J.B. Melo, I.M. Carreira, WT1, MSH6, GATA5 and PAX5 as epigenetic oral squamous cell carcinoma biomarkers - a short report. Cell Oncol 39, 573–582 (2016). CrossRefGoogle Scholar
  9. 9.
    L. Kadletz, G. Heiduschka, R. Wiebringhaus, E. Gurnhofer, U. Kotowski, G. Haymerle, M. Brunner, C. Barry, L. Kenner, ELMO3 expression indicates a poor prognosis in head and neck squamous cell carcinoma - a short report. Cell Oncol 40, 193–198 (2017). CrossRefGoogle Scholar
  10. 10.
    H. Zahreddine, K.L. Borden, Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4, 28 (2013). CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    K.Q. Liu, Z.P. Liu, J.K. Hao, L. Chen, X.M. Zhao, Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinf 13, 126 (2012).–2105–13-126 CrossRefGoogle Scholar
  12. 12.
    E.M.F. de Sousa, L. Vermeulen, Wnt signaling in cancer stem cell biology. Cancers 8 (2016). doi:
  13. 13.
    S. Dasari, P.B. Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740, 364–378 (2014). CrossRefPubMedGoogle Scholar
  14. 14.
    D.J. Stewart, Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst 106, djt356 (2014). CrossRefPubMedGoogle Scholar
  15. 15.
    J. Zhang, J. Liu, H. Li, J. Wang, β-catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol Med Rep 13, 2543–2551 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    M. Kabatkova, O. Zapletal, Z. Tylichova, J. Neca, M. Machala, A. Milcova, J. Topinka, A. Kozubik, J. Vondracek, Inhibition of beta-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation. Mutagenesis 30, 565–576 (2015). CrossRefPubMedGoogle Scholar
  17. 17.
     A. Saha, S. Padhi, M. Kar, S. Roy, P. Maiti, B. Banerjee, Role of TRF2 in efficient DNA repair, spheroid formation and cancer stem cell maintenance. Oncomedicine 2, 71–79 (2017).
  18. 18.
    A. Saha, S. Shree Padhi, S. Roy, B. Banerjee, Method of detecting new cancer stem cell-like enrichment in development front assay (DFA). J Stem Cells 9, 235–242 (2014)PubMedGoogle Scholar
  19. 19.
    A. Saha, S. Shree Padhi, S. Roy, B. Banerjee, HCT116 colonospheres shows elevated expression of hTERT and beta-catenin protein - a short report. J Stem Cells 9, 243–251 (2014)PubMedGoogle Scholar
  20. 20.
    J.P. Newman, B. Banerjee, W. Fang, A. Poonepalli, L. Balakrishnan, G.K. Low, R.N. Bhattacharjee, S. Akira, M. Jayapal, A.J. Melendez, R. Baskar, H.W. Lee, M.P. Hande, Short dysfunctional telomeres impair the repair of arsenite-induced oxidative damage in mouse cells. J Cell Physiol 214, 796–809 (2008). CrossRefPubMedGoogle Scholar
  21. 21.
    B.M. Gyori, G. Venkatachalam, P.S. Thiagarajan, D. Hsu, M.V. Clement, OpenComet: an automated tool for comet assay image analysis. Redox Biol 2, 457–465 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    D.R. Rhodes, S. Kalyana-Sundaram, V. Mahavisno, R. Varambally, J. Yu, B.B. Briggs, T.R. Barrette, M.J. Anstet, C. Kincead-Beal, P. Kulkarni, S. Varambally, D. Ghosh, A.M. Chinnaiyan, Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9, 166–180 (2007). CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    M.A. Ginos, G.P. Page, B.S. Michalowicz, K.J. Patel, S.E. Volker, S.E. Pambuccian, F.G. Ondrey, G.L. Adams, P.M. Gaffney, Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res 64, 55–63 (2004). CrossRefPubMedGoogle Scholar
  24. 24.
    C.H. Peng, C.T. Liao, S.C. Peng, Y.J. Chen, A.J. Cheng, J.L. Juang, C.Y. Tsai, T.C. Chen, Y.J. Chuang, C.Y. Tang, W.P. Hsieh, T.C. Yen, A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma. PloS one 6, e23452 (2011). CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    A. Cromer, A. Carles, R. Millon, G. Ganguli, F. Chalmel, F. Lemaire, J. Young, D. Dembele, C. Thibault, D. Muller, O. Poch, J. Abecassis, B. Wasylyk, Dentification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis. Oncogene 23, 2484–2498 (2004). CrossRefPubMedGoogle Scholar
  26. 26.
    S. Sekine, T. Shibata, M. Sakamoto, S. Hirohashi, Target disruption of the mutant β-catenin gene in colon cancer cell line HCT116: preservation of its malignant phenotype. Oncogene 21, 5906–5911 (2002). CrossRefPubMedGoogle Scholar
  27. 27.
    A.B. Sparks, P.J. Morin, B. Vogelstein, K.W. Kinzler, Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58, 1130–1134 (1998)PubMedGoogle Scholar
  28. 28.
    E. Beurel, M. Kornprobst, M.J. Blivet-Van Eggelpoel, C. Ruiz-Ruiz, A. Cadoret, J. Capeau, C. Desbois-Mouthon, GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp Cell Res 300, 354–364 (2004). CrossRefPubMedGoogle Scholar
  29. 29.
    S.G. Shiah, Y.S. Shieh, J.Y. Chang, The Role of Wnt Signaling in Squamous Cell Carcinoma. J Dent Res 95, 129–134 (2016). CrossRefPubMedGoogle Scholar
  30. 30.
    Padhi SS, Kar M, Saha A, Baisakh MR, Mohapatra N, Banerjee BN. Rapid recurrence and poor prognosis with altered levels of β-catenin in 3 cases of head and neck squamous cell carcinoma patients. Head Neck Oncol 6, 39 (2014)Google Scholar
  31. 31.
    Y. Yamano, K. Uzawa, K. Saito, D. Nakashima, A. Kasamatsu, H. Koike, Y. Kouzu, K. Shinozuka, K. Nakatani, K. Negoro, S. Fujita, H. Tanzawa, Identification of cisplatin-resistance related genes in head and neck squamous cell carcinoma. Int J Cancer 126, 437–449 (2010). CrossRefPubMedGoogle Scholar
  32. 32.
    D.W. Shen, L.M. Pouliot, M.D. Hall, M.M. Gottesman, Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 64, 706–721 (2012). CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    M.K. Mohammed, C. Shao, J. Wang, Q. Wei, X. Wang, Z. Collier, S. Tang, H. Liu, F. Zhang, J. Huang, D. Guo, M. Lu, F. Liu, J. Liu, C. Ma, L.L. Shi, A. Athiviraham, T.C. He, M.J. Lee, Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 3, 11–40 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    N. Kneidinger, A.O. Yildirim, J. Callegari, S. Takenaka, M.M. Stein, R. Dumitrascu, A. Bohla, K.R. Bracke, R.E. Morty, G.G. Brusselle, R.T. Schermuly, O. Eickelberg, M. Konigshoff, Activation of the WNT/beta-catenin pathway attenuates experimental emphysema. Am. J. Respir. Crit. Care Med. 183, 723–733 (2011). CrossRefPubMedGoogle Scholar
  35. 35.
    A.M. Florea, D. Busselberg, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3, 1351–1371 (2011). CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    A. Basu, S. Krishnamurthy, Cellular responses to Cisplatin-induced DNA damage. J Nucleic Acids 2010, 1–16 (2010). Google Scholar
  37. 37.
    R.W. Robey, O. Polgar, J. Deeken, K.W. To, S.E. Bates, BCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26, 39–57 (2007). CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2017

Authors and Affiliations

  • Souvick Roy
    • 1
  • Madhabananda Kar
    • 2
  • Shomereeta Roy
    • 1
  • Arka Saha
    • 1
  • Swatishree Padhi
    • 1
  • Birendranath Banerjee
    • 1
  1. 1.Molecular Stress and Stem Cell Biology Group, School of BiotechnologyKIIT UniversityBhubaneswarIndia
  2. 2.Department of Surgical OncologyAll India Institute of Medical Sciences (AIIMS)BhubaneswarIndia

Personalised recommendations