Advertisement

Cellular Oncology

, Volume 41, Issue 2, pp 159–168 | Cite as

Amphiregulin regulates proliferation and migration of HER2-positive breast cancer cells

  • Hannah Schmucker
  • Walker M. Blanding
  • Julia M. Mook
  • Jessica F. Wade
  • Jang Pyo Park
  • Kerri Kwist
  • Hiral Shah
  • Brian W. Booth
Original Paper
  • 291 Downloads

Abstract

Purpose

Tumor initiation and progression rely on cellular proliferation and migration. Many factors are involved in these processes, including growth factors. Amphiregulin (AREG) is involved in normal mammary development and the development of estrogen receptor (ER)-positive breast cancer. The aim of this project was to determine if AREG is involved in the proliferation and progression of HER2-positive breast cancer.

Methods

Mouse cell lines MMTV-neu, HC-11 and COMMA-D, as well as human cell lines MCF10A, SKBR3, HCC1954 and BT474 were used. Real-time PCR was used to quantify AREG expression and neutralizing antibodies were used to reduce the autocrine/paracrine effects of AREG. Transfections using siRNA and shRNA were used to knockdown AREG expression in the cancer cell lines. Free-floating sphere formation, colony forming, scratch wound and Transwell assays were used to assess the proliferation, tumor forming and migratory capacities of transfected cancer cells.

Results

We found AREG expression in both normal epithelial cell lines and tumor-derived cell lines. Knockdown of AREG protein expression resulted in reduced sphere sizes and reduced sphere numbers in both mouse and human cancer cells that overexpress erbB2/HER2. AREG was found to be involved in cancer cell migration and invasion. In addition, we found that AREG expression knockdown resulted in different migration capacities in normal and erbB2/HER2 overexpressing cancer cells.

Conclusions

Based on our results we conclude that AREG is involved in regulating the proliferation and migration of erbB2/HER2-positive breast cancer cells.

Keywords

Amphiregulin Breast cancer erbB2 HER2 Migration Transfection 

Notes

Acknowledgments

The Institute for Biological Interfaces of Engineering (IBIOE) of Clemson University provided funding for this project. The Calhoun Honors College of Clemson University awarded undergraduate research grants to WMB, JFW, and JMM.

Compliance with ethical standards

Conflict of interest

All authors declare no competing interests with the work described herein.

References

  1. 1.
    J. Lester, Breast cancer in 2007: Incidence, risk assessment, and risk reduction strategies. Clin. J. Oncol. Nurs. 11, 619–622 (2007).  https://doi.org/10.1188/07.CJON.619-622 CrossRefPubMedGoogle Scholar
  2. 2.
    S.J. Schnitt, Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod. Pathol. 23, S60–S64 (2010).  https://doi.org/10.1038/modpathol.2010.33 CrossRefPubMedGoogle Scholar
  3. 3.
    D.J. Slamon, G.M. Clark, S.G. Wong, W.J. Levin, A. Ullrich, W.L. McGuire, Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).  https://doi.org/10.1126/science.3798106 CrossRefPubMedGoogle Scholar
  4. 4.
    D.J. Slamon, W. Godolphon, L.A. Jones, J.A. Holt, S.G. Wong, D.E. Keith, W.J. Levin, S.G. Stuart, J. Udove, A. Ullrich, M.F. Press, Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).  https://doi.org/10.1126/science.2470152 CrossRefPubMedGoogle Scholar
  5. 5.
    I.L. Andrulis, S.B. Bull, M.E. Blackstein, D. Sutherland, C. Mak, S. Sidofsky, K.P. Pritzker, R.W. Hartwick, W. Hanna, L. Lickley, R. Wilkinson, A. Qizilbash, U. Ambus, M. Lipa, H. Weizel, A. Katz, M. Baida, S. Mariz, G. Stolk, P. Dacamara, W. Geddie, D. McCready, Neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto breast cancer study group. J. Clin. Oncol. 16, 1340–1349 (1998).  https://doi.org/10.1200/JCO.1998.16.4.1340 CrossRefPubMedGoogle Scholar
  6. 6.
    W.J. Muller, E. Sinn, P.K. Pattengale, R. Wallace, P. Leder, Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105–115 (1988).  https://doi.org/10.1016/0092-8674(88)90184-5 CrossRefPubMedGoogle Scholar
  7. 7.
    P.M. Siegel, E.D. Ryan, R.D. Cardiff, W.J. Muller, Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: Implications for human breast cancer. EMBO J. 18, 2149–2164 (1999).  https://doi.org/10.1093/emboj/18.8.2149 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    K.U. Wagner, C.A. Boulanger, M.D. Henry, M. Sgagias, L. Hennighausen, G.H. Smith, An adjunct mammary epithelial cell population in parous females: Its role in functional adaptation and tissue renewal. Development 129, 1377–1386 (2002)PubMedGoogle Scholar
  9. 9.
    C.A. Boulanger, K.U. Wagner, G.H. Smith, Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene 24, 552–560 (2005).  https://doi.org/10.1038/sj.onc.1208185 CrossRefPubMedGoogle Scholar
  10. 10.
    B.W. Booth, C.A. Boulanger, L.H. Anderson, G.H. Smith, The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 30, 679–689 (2010).  https://doi.org/10.1038/onc.2010.439 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    M.D. Henry, A.A. Triplett, K.B. Oh, G.H. Smith, K.U. Wagner, parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 23, 6980–6985 (2004).  https://doi.org/10.1038/sj.onc.1207827 CrossRefPubMedGoogle Scholar
  12. 12.
    P. Taneja, D.P. Frazier, R.D. Kendig, D. Maglic, T. Sugiyama, F. Kai, N.K. Taneja, K. Inoue, MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev. Mol. Diagn. 9, 423–440 (2009).  https://doi.org/10.1586/erm.09.31 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    M. Shoyab, V.L. McDonald, J.G. Bradley, G.J. Todaro, Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc. Natl. Acad. Sci. USA 85, 6528–6532 (1988).  https://doi.org/10.1073/pnas.85.17.6528 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    M. Shoyab, G.D. Plowman, V.L. McDonald, J.G. Bradley, G.J. Todaro, Structure and function of human amphiregulin: A member of the epidermal growth factor family. Science 243, 1074–1076 (1989).  https://doi.org/10.1126/science.2466334 CrossRefPubMedGoogle Scholar
  15. 15.
    D. Graus-Porta, R.R. Beerli, J.M. Daly, N.E. Hynes, ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 16, 1647–1655 (1997).  https://doi.org/10.1093/emboj/16.7.1647 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    E. Tzahar, H. Waterman, X. Chen, G. Levkowitz, D. Karunagaran, S. Lavi, B.J. Ratzkin, Y. Yarden, A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell Biol. 16, 5276–5287 (1996).  https://doi.org/10.1128/MCB.16.10.5276 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    A. Appert-Collin, P. Hubert, G. Cremel, A. Bennasroune, Role of ErbB receptors in cancer cell migration and invasion. Front Pharmacol. 6, 283 (2015).  https://doi.org/10.3389/fphar.2015.00283 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    V. Bertelsen, E. Stang, The mysterious ways of ErbB2/HER2 trafficking. Membranes 4, 424–446 (2014).  https://doi.org/10.3390/membranes4030424 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    M.D. Sternlicht, S.W. Sunnarborg, H. Kouros-Mehr, Y. Yu, D.C. Lee, Z. Werb, Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132, 3923–3933 (2005).  https://doi.org/10.1242/dev.01966 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    N.J. Kenney, R.P. Huang, G.R. Johnson, J.X. Wu, D. Okamura, W. Matheny, E. Kordon, W.J. Gullick, G. Plowman, G.H. Smith, D.S. Salomon, E.D. Andamson, Detection and location of amphiregulin and Cripto-1 expression in the developing postnatal mouse mammary gland. Mol. Reprod. Dev. 41, 277–286 (1995).  https://doi.org/10.1002/mrd.1080410302 CrossRefPubMedGoogle Scholar
  21. 21.
    L. Ciarloni, S. Mallepell, C. Brisken, Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc. Natl. Acad. Sci. USA 104, 5455–5460 (2007).  https://doi.org/10.1073/pnas.0611647104 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    M.D. Aupperlee, J.R. Leipprandt, J.M. Bennett, R.C. Schwartz, S.Z. Haslam, Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast Cancer Res. 15, R44 (2013).  https://doi.org/10.1186/bcr3431 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    B.W. Booth, C.A. Boulanger, L.H. Anderson, L. Jimenez-Rojo, C. Brisken, G.H. Smith, Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Exp. Cell Res. 316, 422–432 (2010).  https://doi.org/10.1016/j.yexcr.2009.11.006 CrossRefPubMedGoogle Scholar
  24. 24.
    A. Baillo, C. Giroux, S.P. Ethier, Knock-down of amphiregulin inhibits cellular invasion in inflammatory breast cancer. J. Cell Physiol. 226, 2691–2701 (2011).  https://doi.org/10.1002/jcp.22620 CrossRefPubMedGoogle Scholar
  25. 25.
    E.A. Peterson, E.C. Jenkins, K.A. Lofgren, N. Chandiramani, H. Liu, E. Aranda, M. Barnett, P.A. Kenny, I. Amphiregulin, A critical downstream effector of estrogen signaling in ERalpha-positive breast cancer. Cancer Res. 75, 4830–4838 (2015).  https://doi.org/10.1158/0008-5472.CAN-15-0709 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    S. LeJeune, R. Leek, E. Horak, G. Plowman, M. Greenall, A.L. Harris, Amphiregulin, epidermal growth factor receptor, and estrogen receptor expression in human primary breast cancer. Cancer Res. 53, 3597–3602 (1993)PubMedGoogle Scholar
  27. 27.
    E.A. Peterson, E. Pectasides, S. Shabbeer, L. Wiechmann, J.A. Sparano, P.A. Kenny, Amphiregulin levels in breast cancer patients and cancer-free controls. Exp. Hematol. Oncol. 2, 25 (2013).  https://doi.org/10.1186/2162-3619-2-25 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    J. McBryan, J. Howlin, S. Napoletano, F. Martin, Amphiregulin: Role in mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia 13, 159–169 (2008).  https://doi.org/10.1007/s10911-008-9075-7 CrossRefPubMedGoogle Scholar
  29. 29.
    J.P. Park, W.M. Blanding, J.A. Feltracco, B.W. Booth, Validation of an in vitro model of erbB2 cancer cell redirection. In Vitro Cell. Dev. Biol. Anim. 51, 776–786 (2015)CrossRefPubMedGoogle Scholar
  30. 30.
    G. Dontu, K.W. Jackson, E. McNicholas, M.J. Kawamura, W.M. Abdallah, M.S. Wicha, Role of notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004).  https://doi.org/10.1186/bcr920 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    J.P. Park, A. Raafat, J.A. Feltracco, W.M. Blanding, B.W. Booth, Differential gene expression in nuclear label-retaining cells in the developing mouse mammary gland. Stem Cells Dev. 22, 1297–1306 (2013).  https://doi.org/10.1089/scd.2012.0496 CrossRefPubMedGoogle Scholar
  32. 32.
    T.A. Ngobili, H. Shah, J.P. Park, K.W. Kwist, B. Inskeep, K.J. Burg, B.W. Booth, Remodeling of tannic acid crosslinked collagen type I induces apoptosis in ER+ breast cancer cells. Anticancer Res. 35, 1285–1290 (2015)PubMedGoogle Scholar
  33. 33.
    S. Liu, G. Dontu, I.D. Mantle, S. Patel, N.S. Ahn, K.W. Jackson, P. Suri, M.S. Wicha, Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063–6071 (2006).  https://doi.org/10.1158/0008-5472.CAN-06-0054 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    M. Kok, R.H. Koornstra, T.C. Margarido, R. Fles, N.J. Armstrong, S.C. Linn, L.J. Van’t, B. Veer, Weigelt, Mammosphere-derived gene set predicts outcome in patients with ER-positive breast cancer. J. Pathol. 218, 316–326 (2009).  https://doi.org/10.1002/path.2544 CrossRefPubMedGoogle Scholar
  35. 35.
    H. Masuda, T. Asahara, Clonogenic assay of endothelial progenitor cells. Trends Cardiovasc. Med. 23, 99–103 (2013).  https://doi.org/10.1016/j.tcm.2012.09.007 CrossRefPubMedGoogle Scholar
  36. 36.
    B.A. Teicher, Vivo/ex vivo and in situ assays used in cancer research: A brief review. Toxicol. Pathol. 37, 114–122 (2009).  https://doi.org/10.1177/0192623308329473 CrossRefPubMedGoogle Scholar
  37. 37.
    J.E. Visvader, G.H. Smith, Murine mammary epithelial stem cells: Discovery, function, and current status. Cold Spring Harb. Perspect. Biol. 3, a004879 (2011)Google Scholar
  38. 38.
    M. Makarem, B.T. Spike, C. Dravis, N. Kannan, G.M. Wahl, C.J. Eaves, Stem cells and the developing mammary gland. J. Mammary Gland Biol. Neoplasia 18, 209–219 (2013).  https://doi.org/10.1007/s10911-013-9284-6 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    J.E. Visvader, J. Stingl, Mammary stem cells and the differentiation hierarchy: Current status and perspectives. Genes Dev. 28, 1143–1158 (2014).  https://doi.org/10.1101/gad.242511.114 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    K.U. Wagner, B.W. Booth, C.A. Boulanger, G.H. Smith, Multipotent P.I.-M.E.C. are the true targets of MMTV-neu tumorigenesis. Oncogene 32, 1338 (2013).  https://doi.org/10.1038/onc.2012.452
  41. 41.
    L.A. Matulka, A.A. Triplett, K.U. Wagner, Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev. Biol. 303, 29–44 (2007).  https://doi.org/10.1016/j.ydbio.2006.12.017 CrossRefPubMedGoogle Scholar
  42. 42.
    R.D. Bruno, C.A. Boulanger, G.H. Smith, Notch-induced mammary tumorigenesis does not involve the lobule-limited epithelial progenitor. Oncogene 31, 60–67 (2012).  https://doi.org/10.1038/onc.2011.215 CrossRefPubMedGoogle Scholar
  43. 43.
    S. Mallepell, A. Krust, P. Chambon, C. Brisken, Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. USA 103, 2196–2201 (2006).  https://doi.org/10.1073/pnas.0510974103 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    R.B. Clarke, A. Howell, C.S. Potten, E. Anderson, Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 57, 4987–4991 (1997)PubMedGoogle Scholar
  45. 45.
    M.J. Ellis, A. Coop, B. Singh, L. Mauriac, A. Llombert-Cussac, F. Janicke, W.R. Miller, D.B. Evans, M. Dugan, C. Brady, E. Quebe-Fehling, M. Borgs, Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: Evidence from a phase III randomized trial. J. Clin. Oncol. 19, 3808–3816 (2001).  https://doi.org/10.1200/JCO.2001.19.18.3808 CrossRefPubMedGoogle Scholar
  46. 46.
    J.W. Kim, D.K. Kim, A. Min, K.H. Lee, H.J. Nam, J.H. Kim, J.S. Kim, T.Y. Kim, S.A. Im, I.A. Park, Amphiregulin confers trastuzumab resistance via AKT and ERK activation in HER2-positive breast cancer. J. Cancer. Res. Clin. Oncol. 142, 157–165 (2016).  https://doi.org/10.1007/s00432-015-2012-4 CrossRefPubMedGoogle Scholar
  47. 47.
    R. Wang, Z. Li, H. Guo, W. Shi, Y. Xin, W. Chang, T. Huang, Caveolin 1 knockdown inhibits the proliferation, migration and invasion of human breast cancer BT474 cells. Mol. Med. Rep. 9, 1723–1728 (2014).  https://doi.org/10.3892/mmr.2014.2018 CrossRefPubMedGoogle Scholar
  48. 48.
    L. Ma, F. Lan, Z. Zheng, F. Xie, L. Wang, W. Liu, J. Han, F. Zheng, Y. Xie, Q. Huang, Epidermal growth factor (EGF) and interleukin (IL)-1beta synergistically promote ERK1/2-mediated invasive breast ductal cancer cell migration and invasion. Mol. Cancer 11, 79 (2012).  https://doi.org/10.1186/1476-4598-11-79 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    K. Sternke-Hale, A.M. Gonzalez-Angulo, A. Lluch, R.M. Neve, W.L. Kuo, M. Davies, M. Carey, Z. Hu, Y. Guan, A. Sahin, W.F. Symmans, L. Pusztai, L.K. Nolden, H. Horlings, K. Berns, M.C. Hung, M.J. van de Vijver, V. Valero, J.W. Gray, R. Bernards, G.B. Mills, B.T. Hennessy, An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 68, 6084–6091 (2008).  https://doi.org/10.1158/0008-5472.CAN-07-6854 CrossRefGoogle Scholar
  50. 50.
    S.J. Schnitt, Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod. Pathol. 23, S60–S64 (2010).  https://doi.org/10.1038/modpathol.2010.33 CrossRefPubMedGoogle Scholar
  51. 51.
    K. Subik, J.F. Lee, L. Baxter, T. Strzepek, D. Costello, P. Crowley, L. Xing, M.C. Hung, T. Bonfigio, D.G. Hicks, P. Tang, The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical analysis in breast cancer cell lines. Breast Cancer 4, 35–41 (2010)PubMedCentralPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesClemson UniversityClemsonUSA
  2. 2.Department of MicrobiologyClemson UniversityClemsonUSA
  3. 3.Institute for Biological Interfaces of EngineeringClemson UniversityClemsonUSA
  4. 4.Department of Bioengineering, Institute for Biological Interfaces of EngineeringClemson UniversityClemsonUSA

Personalised recommendations