Green mass to biogas in Ukraine—bioenergy potential of corn and sweet sorghum

Abstract

In current times, we heavily rely on the use of fossil fuels, which bring negative impacts on climate change; therefore, it is essential to place more focus on all renewable alternatives, especially bioenergy crops. This study is focused on the quantification and evaluation of biogas production from either corn or sweet sorghum, as well as their combination. The field data were obtained from 2013 to 2016 in central Ukraine. The Buswell equation was used for the calculation of the theoretical biogas and methane potential. The results show that corn and sweet sorghum were intercropping and had higher on 8.5–37.8% of green mass, and 9.5–28.7% estimated yield of biogas compared to the single use of these crops. Due to the higher dry matter content, the specific yield of biogas per unit of applied corn silage was higher by 33.7–50.6% compared to sweet sorghum. However, biogas yield was increased by 9.2–13.0% when using a mixture of corn silage and sweet sorghum compared to sweet sorghum alone. Results of biogas and methane yield per unit area show that the highest rates, 10.2 and 5.9 thousand m3/ha, were obtained in the combined growing of hybrids of sweet sorghum Dovista and corn Monica 350. Even though theoretical calculations have some limitations, the gathered results provide essential information on the potential of the examined green mass for biogas potential in Ukraine. Such information are crucial to be known for economic and energy reasons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kaletnik GM, Pryshlyak VM (2010) Biofuels: efficiency of their production and consumption in the agro-industrial complex of Ukraine. Ki.ev. 327 p

  2. 2.

    Toklu E (2017) Biomass energy potential and utilization in Turkey. Renew Energy 107:235–244. https://doi.org/10.1016/j.renene.2017.02.008

    Article  Google Scholar 

  3. 3.

    Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem №44(3):550–552

    Article  Google Scholar 

  4. 4.

    Boyle WC (1977) Energy recovery from sanitary landfills. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon Pres, New York, pp 119–138

    Google Scholar 

  5. 5.

    Achinas S, Euverink GJW (2016) Theoretical analysis of biogas potential prediction from agricultural waste. Resour-Effic Technol №2(3):143–147. https://doi.org/10.1016/j.reffit.2016.08.001

    Article  Google Scholar 

  6. 6.

    Luna-deRisco M, Normak A, Orupold K (2011) Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron Res 9(1–2):331–342

    Google Scholar 

  7. 7.

    Mahnert P, Linke B (2009) Kinetic study of biogas production from energy crops and animal waste slurry: effect of organic loading rate and reactor size. Environ Technol 30(1):93–99. https://doi.org/10.1080/09593330802246640

    Article  Google Scholar 

  8. 8.

    Kacprzak A, Krzystek L, Ledakowicz S, Księżak J (2010) Evaluation of biochemical potential (BMP) of various energy crops. In: Proceedings of the 3-rd international conference on engineering for waste and biomass valorisation, Beijing, China, p. 5 2010

  9. 9.

    Bassam N (1998) Energy plant species-their use and impact on environment. London. 200 p

  10. 10.

    Scholz V, Ellerbrock R (2002) The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy №23:81–92

    Article  Google Scholar 

  11. 11.

    Heiermann M, Plöchl M, Linke B, Schelle H, Herrmann C (2009) Biogas crops – part I: specifications and suitability of field crops for anaerobic digestion. Agric Eng Int CIGR J Vol. XI:1087–1093

    Google Scholar 

  12. 12.

    Dubrovskis V, Plume I, Bartusevics J, Kotelenecs V (2010) Biogas production from fresh maize biomass. Engineering for Rural Development, Jelgava, рр 220–225

  13. 13.

    Mazurkiewicz J, Marczuk A, Pochwatka P, Kujawa S (2019) Maize straw as a valuable energetic material for biogas plant feeding. Materials (Basel) №12:3848

    Article  Google Scholar 

  14. 14.

    Meyer-Aurich A, Lochmann Y, Klauss H, Prochnow A (2016) Comparative advantage of maize- and grass-silage based feedstock for biogas production with respect to greenhouse gas mitigation. Sustainability 8(7):617

    Article  Google Scholar 

  15. 15.

    Bartuševics J, Gaile Z (2010) Effect of silaging on chemical composition of maize substrate for biogas production. In Annual 16-th International Scientific Conference Proceedings: Research for rural development, Jelgava, Latvia, Vol. 1. pp. 42–47 19–21 May 2010

  16. 16.

    Amon T, Amon B, Kryvoruchko М, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure – Influence of biomass composition on the methane yield. Agric Ecosyst Environ №118:173–182

    Article  Google Scholar 

  17. 17.

    Schittenhelm S (2010) Effect of drought stress on yield and quality of maize/sunflower and maize/sorghum intercrops for biogas production. J Agron Crop Sci №196:253–261

    Google Scholar 

  18. 18.

    Serra P, Giuntoli J, Agostini A, Colauzzi M, Amaducci S (2017) Coupling sorghum biomass and wheat straw to minimise the environmental impact of bioenergy production. J Clean Prod 154:242–254. https://doi.org/10.1016/j.jclepro.2017.03.208

    Article  Google Scholar 

  19. 19.

    Royik MV, Hanzhenko OM, Tymoschuk VL (2014) Concept of biogas production from bioenergy plants in Ukraine. Bioenergetics 2:6–8

    Google Scholar 

  20. 20.

    Geletukha GG, Zheleznaya TA, Kucheruk PР, Oleynik EN, Triboy AV (2015) Bioeneregetika in Ukraine: current state and prospects for development. Part 2. Ind Heat Eng Vol. 37(№ 3):65–73

    Article  Google Scholar 

  21. 21.

    Masse L, Masse DI, Beaudette V, Muir M (2005) Size distribution and composition of particles in raw and anaerobically digested swine manure. Trans ASAE №48(5):1943–1949

    Article  Google Scholar 

  22. 22.

    Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol №109(1–3):263–274

    Article  Google Scholar 

  23. 23.

    Kažimírová V, Gaduš J, Giertl T (2018) Verification of suitability of substrate composition for production and quality of biogas. Acta Technologica Agriculturae №3:115–118

    Article  Google Scholar 

  24. 24.

    Amon T, Kryvoruchko V, Amon B, Bodiroza V, Zollitsch W, Boxberger J (2006) Biogas Production from Energy Maize. Landtechnik №2:86–87

    Google Scholar 

  25. 25.

    Mahmood A, Ullah H, Ijaz M, Naeem AS, Honermeie B (2013) Evaluation of sorghum cultivar for biomass and biogas production. Aust J Crop Sci №7(10):1456–1462

    Google Scholar 

  26. 26.

    Podkówka W, Podkówka Z, Kowalczyk-Ju’sko A. Pasyniuk P 2012 Agricultural biogas renewable energy source. Theory and practical application. Wydawnictwo PWRiL рр. 147–152 2012

  27. 27.

    Mazur VA, Pantsyreva HV, Mazur KV, Myalkovsky RO, Alekseev OO (2020) Agroecological prospects of using corn hybrids for biogas production. Agron Res 18:177–182 (in press)

    Google Scholar 

  28. 28.

    Gerber M, Span R (2008) An analysis of available mathematical model for anaerobic digestion of organic substances for production of biogas. International Gas Union Research conference, Paris. №1. 1294–1324 2008

  29. 29.

    Baserga U (1998) Landwirtschaftliche Co-Vergärungs-Biogasanlagen. FAT-Berichte Nr. 512, Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik, Tänikon, Schweiz

  30. 30.

    Keymer U, Schilcher A (2003) Biogasanlagen: Berechnung der Gasausbeute von Kosubstraten. Bayrische Landesanstalt für Landwirtschaft

  31. 31.

    Roati C, Fiore S, Ruffino B, Marchese F, Novarino D, Zanetti MC (2012) Preliminary evaluation of the potential biogas production of food-processing industrial wastes. Am J Environ Sci 8(3):291–296

    Article  Google Scholar 

  32. 32.

    Velázquez-Martí B, Meneses-Quelal OW, Gaibor-Chavez J, Niño-Ruiz Z (2003) Review of mathematical models for the anaerobic digestion process, anaerobic digestion. J Rajesh Banu, IntechOpen 2018. https://doi.org/10.5772/intechopen.80815

  33. 33.

    Kowalczyk-Juśko A, Pochwatka P, Zaborowicz M, Czekała W, Mazurkiewicz J, Mazur A, Janczak D, Marczuk A, Dach J (2020) Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy 202:117729

    Article  Google Scholar 

  34. 34.

    Abeuov SK (2014) Polyspecific crops, especially unity and contradictions. Potential Mod Science 6:10–13 (in Russian; Polividovye posevy, osobennosti edinstva i protivorechij)

  35. 35.

    Drozdova OV (2015) Productivity and chemical composition of green mass of intercropping crops of different corn and sorghum hybrids. Sci Tech Bull №114:69–73

    Google Scholar 

  36. 36.

    Samarappuli D, Berti MT (2018) Intercropping forage sorghum with maize is a promising alternative to maize silage for biogas production. J Clean Prod 194:515–524

    Article  Google Scholar 

  37. 37.

    Bartusevics J, Gaile Z (2012) Maize production for biogas in Latvia. Proceedings of the International Scientific Conference on Renewa, 51–56 р 2012

  38. 38.

    Hermuth J, Janovská D, Strašil Z, Usťak S, Hýsek J (2012) Sorghum bicolor (L.) Moench: possibilities of utilization in Czech Republic conditions. VÚRV. Praha, 47 р

  39. 39.

    Klimiuk E, Pokój T, Budzyňski W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol №101:9527–9535

    Article  Google Scholar 

  40. 40.

    Kára J, Pastorek Z, Přibyl E (2007) The production and utilization of biogas in agriculture. VÚZT. Praha. 120 р

  41. 41.

    Kuglarz K, Bury M, Kasprzycka A, Lalak-Kańczugowska J (2019) Effect of nitrogen fertilization on the production of biogas from sweet sorghum and maize biomass. Environ Technol №15:1–11

    Google Scholar 

Download references

Acknowledgments

We are thankful to the Czech Development Cooperation support, which allowed this scientific cooperation to start. Furthermore, this research was supported by the Internal Grant Agency of the Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, project number [20205008].

Author information

Affiliations

Authors

Contributions

Mykola Grabovskyi: supervision, methodology, investigation, and writing—original draft. Mykola Lozinskyi: formal analysis and data curation. Tetiana Grabovska: methodology, formal analysis, and visualization. Hynek Roubík: conceptualization, validation, resources, and writing, review and editing, project administration, and funding acquisition.

Corresponding authors

Correspondence to Mykola Grabovskyi or Hynek Roubík.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grabovskyi, M., Lozinskyi, M., Grabovska, T. et al. Green mass to biogas in Ukraine—bioenergy potential of corn and sweet sorghum. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01316-0

Download citation

Keywords

  • Varieties
  • Hybrids
  • Dry matter
  • Methane
  • Green mass yield