Skip to main content
Log in

Influence of dilute acid, alkali and hydrothermalpretreatments on methane improvement from datepalm waste “Takarboucht” cultivar

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This research assesses the impacts of hydrothermal (120 °C for 30 min), dilute acid (2%(w/w) H2SO4 at 120 °C for 30 min) and alkali (6% (w/w) NaOH at 35 °C for 24 h)pretreatments on the methane yield from date palm waste “Takarboucht” cultivar. The pretreated and untreated date palm waste (DPW) were digested at mesophilic temperature (36 °C) for 20 days. The highest soluble chemical oxygen demand (sCOD) was obtained by DPW hydrolysate from alkali pretreatment. The highest methane yield of 161.86 ml/g VS was obtained from untreated DPW. Among all pretreatments, higher methane yield was obtained from hydrothermally pretreated DPW (153.35 ml/g VS), followed by acid pretreated DPW (141.65 ml/g VS) and alkali pretreated DPW (50.78 ml/g VS). Alkali pretreatment improved the solubilization of DPW, however, it may not necessarily provide an enhancement in the methane yield. The optimization of the conditions of each pretreatment is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kumar G, Bakonyi P, Sivagurunathan P, et al (2015) Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach. Biofuel res J 2:209–214. https://doi.org/10.18331/BRJ2015.2.1.7

  2. Masera K, Hossain AK (2018) Biofuels and thermal barrier : A review on compression ignition engine performance , combustion and exhaust gas emission. J Energy Inst 1–19. https://doi.org/10.1016/j.joei.2018.02.005, Biofuels and thermal barrier: A review on compression ignition engine performance, combustion and exhaust gas emission, 92

  3. Rao PV, Baral SS, Dey R, Mutnuri S (2010) Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sust Energ Rev 14:2086–2094. https://doi.org/10.1016/j.rser.2010.03.031

    Article  Google Scholar 

  4. Kumar G, Dharmaraja J, Arvindnarayan S, Shoban S, Bakonyi P, Saratale GD, Nemestóthy N, Bélafi–Bakó K, Yoon J–J, Kim S–H (2019) A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel 251:352–367. https://doi.org/10.1016/j.fuel.2019.04.049

    Article  Google Scholar 

  5. Salehian P, Karimi K, Zilouei H, Jeihanipour A (2013) Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106:484–489. https://doi.org/10.1016/j.fuel.2012.12.092

    Article  Google Scholar 

  6. Abraham A, Mathew AK, Park H, Choi O (2019) Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour Technol 301:122725. https://doi.org/10.1016/j.biortech.2019.122725

    Article  Google Scholar 

  7. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Chang SW, Kumar G (2019) A review on lignin structure , pretreatments , fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472. https://doi.org/10.1016/j.biortech.2018.09.070, A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential

  8. Patinvoh RJ, Osadolor OA, Chandolias K, Sárvári Horváth I, Taherzadeh MJ (2017) Innovative pretreatment strategies for biogas production. Bioresour Technol 224:13–24. https://doi.org/10.1016/j.biortech.2016.11.083

    Article  Google Scholar 

  9. Djaafri M, Kalloum S, Kaidi K, Salem F, Balla S, Meslem D, Iddou A (2020) Enhanced methane production from dry leaflets of Algerian date palm (Phoenix dactylifera L.) Hmira cultivar, by alkaline pretreatment. Waste and Biomass Valorization 11:2661–2671. https://doi.org/10.1007/s12649-018-00574-w

    Article  Google Scholar 

  10. Al-Juhaimi FY, Hamad SH, Al-Ahaideb IS, et al (2014) Biogas production through the anaerobic digestion of date palm tree wastes - process optimization. BioResources 9:3323–3333. https://doi.org/10.15376/biores.9.2.3323-3333

  11. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn Stover by alkaline pretreatment. Bioresour Technol 101:7523–7528. https://doi.org/10.1016/j.biortech.2010.04.060

    Article  Google Scholar 

  12. Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12. https://doi.org/10.1016/j.biortech.2012.04.037

    Article  Google Scholar 

  13. Kim M, Kim BC, Nam K, Choi Y (2018) Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw. Biochem Eng J 140:108–114. https://doi.org/10.1016/j.bej.2018.09.012

    Article  Google Scholar 

  14. Taherdanak M, Zilouei H, Karimi K (2016) The influence of dilute sulfuric acid pretreatment on biogas production form wheat plant. Int J Green Energy 13:1129–1134. https://doi.org/10.1080/15435075.2016.1175356

    Article  Google Scholar 

  15. Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM et al (2019) Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: current state, challenges, and opportunities. Appl Sci 9:3721. https://doi.org/10.3390/app9183721

    Article  Google Scholar 

  16. Ayub A, Visvanathan C (2018) Effect of thermal pretreatment on chemical composition , physical structure and biogas production kinetics of wheat straw. J Environ Manag 221:45–52. https://doi.org/10.1016/j.jenvman.2018.05.011, Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw

  17. Fang C, Schmidt JE, Cybulska I, et al (2015) Hydrothermal Pretreatment of Date Palm ( Phoenix dactylifera L .) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential. Biomed Res Int 2015:

  18. Boulal A, Atabani AE, Mohammed MN, et al (2019) Integrated valorization of Moringa oleifera and waste Phoenix dactylifera L. dates as potential feedstocks for biofuels production from Algerian Sahara : An experimental perspective. Biocatal Agric Biotechnol 20:101234. https://doi.org/10.1016/j.bcab.2019.101234

  19. DSA (2019) Direction des Services Agricoles (DSA), service des statistique. Adrar, Algeria

    Google Scholar 

  20. Bouguedoura N, Bennaceur M, Babahani S, Benziouche SE (2015) Date palm status and perspective in Algeria. In: Jameel M. Al-Khayri, Jain SM, Johnson D V. (eds) date palm genetic resources and utilization. Springer Dordrecht Heidelberg New York London, pp 125–168

  21. Ibrahim EB, Mohamed M, Rafik B (2015) Bayoud disease of date palm in Algeria: history, epidemiology and integrated disease management. African J Biotechnol 14:542–550. https://doi.org/10.5897/ajbx2014.14292

    Article  Google Scholar 

  22. Akhtar A, Ivanova T, Jiříček I, Krepl V (2019) Detailed characterization of waste from date palm (Phoenix dactylifera) branches for energy production: comparative evaluation of heavy metals concentration. J Renew Sustain Energy 11:013102. https://doi.org/10.1063/1.5027578

    Article  Google Scholar 

  23. Martis R, Al-Othman A, Tawalbeh M, Alkasrawi M (2020) Energy and economic analysis of date palm biomass feedstock for biofuel production in UAE: pyrolysis, gasification and fermentation. Energies 13:5877. https://doi.org/10.3390/en13225877

  24. Chandrasekhar K, Dune R, Cayetano A, Mehrez I (2020) Environmental Technology & Innovation Evaluation of the biochemical methane potential of different sorts of Algerian date biomass. Environ Technol Innov 20:101180. https://doi.org/10.1016/j.eti.2020.101180

    Article  Google Scholar 

  25. Souli I, Liu X, Lendormi T, et al (2020) Anaerobic digestion of waste Tunisian date (Phoenix dactylifera L.): effect of biochemical composition of pulp and seeds from six varieties. Environ Technol 1–13

  26. Djaafri M, Kalloum S, Soulimani AE, Khelafi M (2019) Bioconversion of dried leaves from algerian date palm (Phoenix dactylifera L.) to biogas by anaerobic digestion. Int J Eng Res Africa 41:131–144. https://doi.org/10.4028/www.scientific.net/JERA.41.131

    Article  Google Scholar 

  27. Jaafar K a (2010) Biogas production by anaerobic digestion of date palm pulp waste. Al-Khwarizmi Eng J 6:14–20

  28. Xin L, Guo Z, Xiao X, Peng C, Zeng P, Feng W, Xu W (2019) Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide. Environ Sci Pollut Res 26:19434–19444. https://doi.org/10.1007/s11356-019-05195-x

    Article  Google Scholar 

  29. Cheng J-R, Liu X-M, Chen Z-Y (2016) Methane production from rice straw hydrolysate treated with dilute acid by anaerobic granular sludge. Appl Biochem Biotechnol 178:9–20

    Article  Google Scholar 

  30. Water Environment Federation AWW, Association (1999) Standard methods for the examination of Water and wastewater. American Public Health Association (APHA), Washington, DC, USA

  31. E872–82 A (2013) Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, ASTM International

  32. Salem F, Kalloum S (2017) Realization and testing of an updraft gasifier preliminary study. Int J Mech Eng robot Res 6:114–117. https://doi.org/10.18178/ijmerr.6.2.114-117

  33. Di Girolamo G, Grigatti M, Barbanti L, Angelidaki I (2013) Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresour Technol 147:152–159. https://doi.org/10.1016/j.biortech.2013.08.006

    Article  Google Scholar 

  34. Beniche I, Hungría J, El Bari H et al (2020) Effects of C/N ratio on anaerobic co-digestion of cabbage, cauliflower, and restaurant food waste. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00733-x

  35. Siddiqui MTH, Nizamuddin S, Mubarak NM, Shirin K, Aijaz M, Hussain M, Baloch HA (2019) Characterization and Process Optimization of Biochar Produced Using Novel Biomass , Waste Pomegranate Peel : A Response Surface Methodology Approach. Waste and Biomass Valorization 10:521–532. https://doi.org/10.1007/s12649-017-0091-y, Characterization and Process Optimization of Biochar Produced Using Novel Biomass, Waste Pomegranate Peel: A Response Surface Methodology Approach

  36. Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. 117–129

  37. Monlau F, Barakat A, Steyer JP, Carrere H (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247. https://doi.org/10.1016/j.biortech.2012.06.040

    Article  Google Scholar 

  38. Kang X, Sun Y, Li L, Kong X, Yuan Z (2018) Improving methane production from anaerobic digestion of Pennisetum hybrid by alkaline pretreatment. Bioresour Technol 255:205–212. https://doi.org/10.1016/j.biortech.2017.12.001

    Article  Google Scholar 

  39. Kumar G, Sivagurunathan P, Thi NBD, Zhen G, Kobayashi T, Kim SH, Xu K (2016) Evaluation of different pretreatments on organic matter solubilization and hydrogen fermentation of mixed microalgae consortia. Int J Hydrog Energy 41:21628–21640. https://doi.org/10.1016/j.ijhydene.2016.05.195

    Article  Google Scholar 

  40. Kameswari KSB, Kalyanaraman C, Thanasekaran K (2013) Evaluation of various pre-treatment processes on tannery sludge for enhancement of soluble chemical oxygen demand. Clean Techn Env Policy 16:369–376. https://doi.org/10.1007/s10098-013-0632-4

    Article  Google Scholar 

  41. Elalami D, Carrere H, Abdelouahdi K, Garcia-Bernet D, Peydecastaing J, Vaca-Medina G, Oukarroum A, Zeroual Y, Barakat A (2020) Mild microwaves, ultrasonic and alkaline pretreatments for improving methane production: impact on biochemical and structural properties of olive pomace. Bioresour Technol 299:122591. https://doi.org/10.1016/j.biortech.2019.122591

    Article  Google Scholar 

  42. Us E, Perendeci NA (2012) Improvement of methane production from greenhouse residues: optimization of thermal and H 2SO 4 pretreatment process by experimental design. Chem Eng J 181–182:120–131. https://doi.org/10.1016/j.cej.2011.11.038

    Article  Google Scholar 

  43. Wang D, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Luo T, Mei Z (2018) Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass? Bioresour Technol 249:117–124. https://doi.org/10.1016/j.biortech.2017.09.197

    Article  Google Scholar 

  44. Chufo A, Yuan H, Zou D, Pang Y, Li X (2015) Biomethane production and physicochemical characterization of anaerobically digested teff ( Eragrostis tef ) straw pretreated by sodium hydroxide bioresource technology biomethane production and physicochemical characterization of anaerobically digested t. Bioresour Technol 181:214–219. https://doi.org/10.1016/j.biortech.2015.01.054

    Article  Google Scholar 

  45. Ahn HK, Smith MC, Kondrad SL, White JW (2010) Evaluation of biogas production potential by dry anaerobic digestion of Switchgrass – animal manure mixtures. Appl Biochem Biotechnol 160:965–975. https://doi.org/10.1007/s12010-009-8624-x

    Article  Google Scholar 

  46. Yao Y, He M, Ren Y, Ma L, Luo Y, Sheng H, Xiang Y, Zhang H, Li Q, An L (2013) Bioresource technology anaerobic digestion of poplar processing residues for methane production after alkaline treatment. Bioresour Technol 134:347–352. https://doi.org/10.1016/j.biortech.2012.12.160

    Article  Google Scholar 

  47. Wang D, Ai P, Yu L, Tan Z, Zhang Y (2015) Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation. Biosyst Eng 132:47–55. https://doi.org/10.1016/j.biosystemseng.2015.02.007

    Article  Google Scholar 

  48. Hashemi SS, Karimi K, Mirmohamadsadeghi S (2019) Hydrothermal pretreatment of safflower straw to enhance biogas production. Energy 172:545–554. https://doi.org/10.1016/j.energy.2019.01.149

    Article  Google Scholar 

  49. Bolado-Rodriguez S, Toquero C, Martin-Juárez J et al (2016) Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour Technol 201:182–190

    Article  Google Scholar 

  50. Eduardo B, Baêta L, Henrique P et al (2017) Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresour Technol 245:66–72. https://doi.org/10.1016/j.biortech.2017.08.110

    Article  Google Scholar 

  51. Mirmohamadsadeghi S, Karimi K, Azarbaijani R, Parsa Yeganeh L, Angelidaki I, Nizami AS, Bhat R, Dashora K, Vijay VK, Aghbashlo M, Gupta VK, Tabatabaei M (2021) Pretreatment of lignocelluloses for enhanced biogas production : a review on influencing mechanisms and the importance of microbial diversity. Renew Sust Energ Rev 135:110173. https://doi.org/10.1016/j.rser.2020.110173

    Article  Google Scholar 

  52. Ferreira LC, Donoso-Bravo A, Nilsen PJ, Fdz-Polanco F, Pérez-Elvira SI (2013) Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour Technol 143:251–257

    Article  Google Scholar 

  53. Buitrón G, Hernández-Juárez A, Hernández-Ram\’\irez MD, Sánchez A (2019) Biochemical methane potential from lignocellulosic wastes hydrothermally pretreated. Ind Crop Prod 139:111555

  54. Guimarães A, Cavalcante G, Gleyciara F et al (2013) Pretreatment strategies to improve anaerobic biodegradability and methane production potential of the palm oil mesocarp fibre. Chem Eng J 230:158–165. https://doi.org/10.1016/j.cej.2013.06.070

    Article  Google Scholar 

  55. Antonopoulou G, Lyberatos G (2013) Effect of pretreatment of sweet sorghum biomass on methane generation. Waste and Biomass Valorization 4:583–591

    Article  Google Scholar 

  56. Gaballah ES, Abomohra AE, Xu C, Elsayed M (2020) Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure. Bioresour Technol 309:123311. https://doi.org/10.1016/j.biortech.2020.123311

    Article  Google Scholar 

  57. Us E, Perendeci NA (2012) Improvement of methane production from greenhouse residues : optimization of thermal and H 2 SO 4 pretreatment process by experimental design. Chem Eng J 181–182:120–131. https://doi.org/10.1016/j.cej.2011.11.038

    Article  Google Scholar 

  58. Zhang C, Li J, Liu C, Liu X, Wang J, Li S, Fan G, Zhang L (2013) Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour Technol 149:353–358. https://doi.org/10.1016/j.biortech.2013.09.070

    Article  Google Scholar 

  59. Song Z, Liu X, Yan Z et al (2014) Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion. Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion 9:1–8. https://doi.org/10.1371/journal.pone.0093801

    Article  Google Scholar 

  60. Atelge MR, Krisa D, Kumar G, Eskicioglu C, Nguyen DD, Chang SW, Atabani AE, al-Muhtaseb AH, Unalan S (2020) Biogas production from organic waste: recent Progress and perspectives. Waste and Biomass Valorization 11:1019–1040. https://doi.org/10.1007/s12649-018-00546-0

    Article  Google Scholar 

  61. Abbasi T, Tauseef SM, Abbasi SA (2011) Biogas energy. Springer Science & Business Media

    Google Scholar 

  62. Zhang M, Wang Z, Zhang X, Qian X, Shen G (2020) Biogas and quality fertilizer production from dry anaerobic digestion of rice straw with nitrogen addition. Bioresour Technol Reports 11:100509. https://doi.org/10.1016/j.biteb.2020.100509

    Article  Google Scholar 

  63. Krishnan S, Singh L, Sakinah M, Thakur S, Wahid ZA, Alkasrawi M (2016) Process enhancement of hydrogen and methane production from palm oil mill effluent using two-stage thermophilic and mesophilic fermentation. Int J Hydrog Energy 41:12888–12898. https://doi.org/10.1016/j.ijhydene.2016.05.037

    Article  Google Scholar 

  64. Matheri AN, Ndiweni SN, Belaid M, Muzenda E, Hubert R (2017) Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renew Sust Energ Rev 80:756–764. https://doi.org/10.1016/j.rser.2017.05.068

    Article  Google Scholar 

  65. Du X, Tao Y, Li H et al (2019) Synergistic methane production from the anaerobic co-digestion of Spirulina platensis with food waste and sewage sludge at high solid concentrations. Renew Energy 142:55–61. https://doi.org/10.1016/j.renene.2019.04.062

    Article  Google Scholar 

  66. Lahboubi N, Kerrou O, Karouach F et al (2020) Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree. Biomass Convers Biorefinery:1–10

  67. Al-Addous M, Alnaief M, Class C, et al (2017) Technical possibilities of biogas production from olive and date waste in Jordan. BioResources 12:9383–9395. https://doi.org/10.15376/biores.12.4.9383-9395

  68. Mamimin C, Chanthong S, Leamdum C, O-Thong S, Prasertsan P (2021) Improvement of empty palm fruit bunches biodegradability and biogas production by integrating the straw mushroom cultivation as a pretreatment in the solid-state anaerobic digestion. Bioresour Technol 319:124227. https://doi.org/10.1016/j.biortech.2020.124227

    Article  Google Scholar 

  69. Varsha SSV, Soomro AF, Baig ZT, Vuppaladadiyam AK, Murugavelh S, Antunes E (2020) Methane production from anaerobic mono-and co-digestion of kitchen waste and sewage sludge: synergy study on cumulative methane production and biodegradability. Biomass Convers Biorefinery:1–9. https://doi.org/10.1007/s13399-020-00884-x

  70. Kainthola J, Shariq M, Kalamdhad AS, Goud V V (2019) Comparative study of different thermal pretreatment techniques for accelerated methane production from rice straw. Biomass convers biorefinery 1–10

  71. Andersen LF, Parsin S, Lüdtke O, Kaltschmitt M (2020) Biogas production from straw—the challenge feedstock pretreatment. Biomass Convers Biorefinery:1–24. https://doi.org/10.1007/s13399-020-00740-y

  72. Shamurad B, Gray N, Petropoulos E, Tabraiz S, Membere E, Sallis P (2020) Predicting the effects of integrating mineral wastes in anaerobic digestion of OFMSW using first-order and Gompertz models from biomethane potential assays. Renew Energy 152:308–319. https://doi.org/10.1016/j.renene.2020.01.067

    Article  Google Scholar 

Download references

Acknowledgments

Ikram Mehrez gratefully acknowledges Pr. Gopalakrishnan Kumar for offering aninternship at the University of Stavanger. The authors gratefully acknowledge the financialsupport from the University of Stavanger, Stavanger 4036, Norway. The authors gratefullyacknowledge DGRSDT (The Directorate-General for Scientific Research and TechnologicalDevelopment in Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram Mehrez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Hydrothermal, dilute acid and alkali pretreatments of DPW on BMP were compared.

• Alkali, dilute acid and hydrothermal pretreatments resulted in an inhibition of AD.

• The maximum solubilization was achieved for alkali pretreatment of DPW

• The maximum methane yield was 161.86 ml/g VS for untreated DPW.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrez, I., Djaafri, M., Semaan, G. et al. Influence of dilute acid, alkali and hydrothermalpretreatments on methane improvement from datepalm waste “Takarboucht” cultivar. Biomass Conv. Bioref. 13, 2067–2077 (2023). https://doi.org/10.1007/s13399-021-01296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01296-1

Keywords

Navigation