The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency

Abstract

Biofuels produced from lignocellulosic biomass provide energy security and reduce greenhouse gas emissions with positive impacts on sustainability. Lignocellulose byproducts are expected to impact the production of cellulosic ethanol. However, lignin is a major factor imposing biomass recalcitrance to saccharification. Although structural phenolics can be removed from lignocellulosic biomass, physical and chemical pretreatments are expensive. In turn, the structure and composition of lignin is very flexible. Up- and downregulation of genes and, thereby, enzymes involved in core and non-core lignin biosynthesis can reduce lignin content and improve biomass saccharification. Alternatively, insertion of heterologous genes to the phenylpropanoid pathway may lead to the incorporation of alternative monomers into lignin, creating desirable properties and preserving the biological roles of lignin with a positive effect on saccharification. Studies reporting the effect of fine regulation on lignin structures are mapping how plants can be transformed to enhance saccharification while preserving productivity. Based on these findings and events, this review updates the state-of-art changes in lignin biosynthesis to improve saccharification efficiency. The main findings reported over the last decade were summarized to permit researchers an overview of this relevant scientific subject.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Not applicable.

References

  1. 1.

    International Energy Agency (2016) World energy trends: an overview. https://euagenda.eu/publications/key-world-energy-trends-excerpt-from-world-energy-balances

  2. 2.

    Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295. https://doi.org/10.1016/j.biortech.2007.11.013

    Article  Google Scholar 

  3. 3.

    Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627. https://doi.org/10.1126/science.1097396

    Article  Google Scholar 

  4. 4.

    Shafrin F, Ferdous AS, Sarkar SK, Ahmed R, Amin A, Hossain K, Sarker M, Rencoret J, Gutiérrez A, del Rio JC, Sanan-Mishra N, Khan H (2017) Modification of monolignol biosynthetic pathway in jute: different gene, different consequence. Sci Rep 7:39984. https://doi.org/10.1038/srep39984

    Article  Google Scholar 

  5. 5.

    Global bioenergy statistics (2019) World Bioenergy Association. https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_HQ.pdf. Accessed 11 October 2020

  6. 6.

    Reid WV, Ali MK, Field CB (2020) The future of bioenergy. Glob Change Biol 26:274–286. https://doi.org/10.1111/gcb.14883

    Article  Google Scholar 

  7. 7.

    Mota TR, Oliveira DM, Marchiosi R et al (2018) Plant cell wall composition and enzymatic deconstruction. AIMS Bioeng 5:63–77. https://doi.org/10.3934/bioeng.2018.1.63

    Article  Google Scholar 

  8. 8.

    Marriott PE, Gómez LD, McQueen-Mason SJ (2016) Unlocking the potential of lignocellulosic biomass through plant science. New Phytol 209:1366–1381. https://doi.org/10.1111/nph.13684

    Article  Google Scholar 

  9. 9.

    Prasad A, Sotenko M, Blenkinsopp T, Coles SR (2016) Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess 21:44–50. https://doi.org/10.1007/s11367-015-0985-5

    Article  Google Scholar 

  10. 10.

    Machineni L (2020) Lignocellulosic biofuel production: review of alternatives. Biomass Conv Bioref 10:779–791. https://doi.org/10.1007/s13399-019-00445-x

    Article  Google Scholar 

  11. 11.

    Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. https://doi.org/10.1007/s10295-008-0327-8

    Article  Google Scholar 

  12. 12.

    Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34:997–1017. https://doi.org/10.1016/j.biotechadv.2016.06.001

    Article  Google Scholar 

  13. 13.

    Buckeridge MS, Santos WD, Souza AP (2014) Routes for cellulosic ethanol in Brazil. In: Cortez LAB (ed) Sugarcane bioethanol – R&D for productivity and sustainability. Blucher, São Paulo, pp 365–380

    Google Scholar 

  14. 14.

    Silva GB, Ionashiro M, Carrara TB, Crivellari AC, Tiné MAS, Prado J, Carpita NC, Buckeridge MS (2011) Cell wall polysaccharides from fern leaves: evidence for a mannan-rich type III cell wall in Adiantum raddianum. Phytochemistry 72:2352–2360. https://doi.org/10.1016/j.phytochem.2011.08.020

    Article  Google Scholar 

  15. 15.

    Vanholme R, De Meester B, Ralph J, Boerjan W (2019) Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol 56:230–239. https://doi.org/10.1016/1016/jcopbio.2019.02.018

    Article  Google Scholar 

  16. 16.

    McCann MC, Carpita NC (2015) Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J Exp Bot 66:4109–4118. https://doi.org/10.1093/jxb/erv267

    Article  Google Scholar 

  17. 17.

    Oliveira DM, Mota TR, Grandis A, de Morais GR, de Lucas RC, Polizeli MLTM, Marchiosi R, Buckeridge MS, Ferrarese-Filho O, dos Santos WD (2020) Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renew Energy 147:2206–2217. https://doi.org/10.1016/j.renene.2019.10.020

    Article  Google Scholar 

  18. 18.

    Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761. https://doi.org/10.1038/nbt1316

    Article  Google Scholar 

  19. 19.

    Mota TR, Oliveira DM, Morais GR, Marchiosi R, Buckeridge MS, Ferrarese-Filho O, dos Santos WD (2019) Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Ind Crops Prod 140:111657. https://doi.org/10.1016/j.indcrop.2019.111657

    Article  Google Scholar 

  20. 20.

    Oliveira DM, Hoshino EP, Mota TR, Marchiosi R, Ferrarese-Filho O, dos Santos WD (2020) Modulation of cellulase activity by lignin-related compounds. Bioresour Technol Reports 10:100390. https://doi.org/10.1016/j.biteb.2020.100390

    Article  Google Scholar 

  21. 21.

    Marchiosi R, Santos WD, Constantin RP et al (2020) Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem Rev 19:865–906. https://doi.org/10.1007/s11101-020-09689-2

    Article  Google Scholar 

  22. 22.

    Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249. https://doi.org/10.1016/j.copbio.2019.02.019

    Article  Google Scholar 

  23. 23.

    Zhang X, Liu C-J (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 8:17–27. https://doi.org/10.1016/j.molp.2014.11.001

    Article  Google Scholar 

  24. 24.

    Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000. https://doi.org/10.1111/j.1469-8137.2012.04337.x

    Article  Google Scholar 

  25. 25.

    Barros J, Serrani-Yarce JC, Chen F, Baxter D, Venables BJ, Dixon RA (2016) Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat Plants 2:16050. https://doi.org/10.1038/nplants.2016.50

    Article  Google Scholar 

  26. 26.

    Barros J, Escamilla-Trevino L, Song L, Rao X, Serrani-Yarce JC, Palacios MD, Engle N, Choudhury FK, Tschaplinski TJ, Venables BJ, Mittler R, Dixon RA (2019) 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat Commun 10:1994. https://doi.org/10.1038/s41467-019-10082-7

    Article  Google Scholar 

  27. 27.

    Park J-J, Yoo CG, Flanagan A, Pu Y, Debnath S, Ge Y, Ragauskas AJ, Wang ZY (2017) Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol Biofuels 10:284. https://doi.org/10.1186/s13068-017-0972-0

    Article  Google Scholar 

  28. 28.

    Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103. https://doi.org/10.1074/jbc.M209362200

    Article  Google Scholar 

  29. 29.

    Schoch GA, Morant M, Abdulrazzak N, Asnaghi C, Goepfert S, Petersen M, Ullmann P, Werck-Reichhart D (2006) The meta-hydroxylation step in the phenylpropanoid pathway: a new level of complexity in the pathway and its regulation. Environ Chem Lett 4:127–136. https://doi.org/10.1007/s10311-006-0062-1

    Article  Google Scholar 

  30. 30.

    Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106. https://doi.org/10.1126/science.1241602

    Article  Google Scholar 

  31. 31.

    Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, Christensen JH, van Reusel B, Storme V, de Rycke R, Rohde A, Morreel K, Boerjan W (2010) Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis. Plant J 64:885–897. https://doi.org/10.1111/j.1365-313X.2010.04353.x

    Article  Google Scholar 

  32. 32.

    Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana reduced epidermal fluorescence1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554. https://doi.org/10.1105/tpc.017509

    Article  Google Scholar 

  33. 33.

    Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opin Biotechnol 37:190–200. https://doi.org/10.1016/j.copbio.2015.10.009

    Article  Google Scholar 

  34. 34.

    Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294. https://doi.org/10.1016/S0031-9422(02)00211-X

    Article  Google Scholar 

  35. 35.

    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938

    Article  Google Scholar 

  36. 36.

    Oliveira DM, Mota TR, Salatta FV, Sinzker RC, Končitíková R, Kopečný D, Simister R, Silva M, Goeminne G, Morreel K, Rencoret J, Gutiérrez A, Tryfona T, Marchiosi R, Dupree P, del Río JC, Boerjan W, McQueen-Mason SJ, Gomez LD, Ferrarese-Filho O, dos Santos WD (2020) Cell wall remodeling under salt stress: insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant Cell Environ 43:2172–2191. https://doi.org/10.1111/pce.13805

    Article  Google Scholar 

  37. 37.

    Yoo CG, Meng X, Pu Y, Ragauskas AJ (2020) The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour Technol 301:122784. https://doi.org/10.1016/j.biortech.2020.122784

    Article  Google Scholar 

  38. 38.

    Yoo CG, Dumitrache A, Muchero W, Natzke J, Akinosho H, Li M, Sykes RW, Brown SD, Davison B, Tuskan GA, Pu Y, Ragauskas AJ (2018) Significance of lignin S/G ratio in biomass recalcitrance of Populus trichocarpa variants for bioethanol production. Sust Chem Engineering 6:2162–2168. https://doi.org/10.1021/acssuschemeng.7b03586

    Article  Google Scholar 

  39. 39.

    Nakagame S, Chandra RP, Kadla JF, Saddler JN (2011) The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose. Bioresour Technol 102:4507–4517. https://doi.org/10.1016/j.biortech.2010.12.082

    Article  Google Scholar 

  40. 40.

    Chanoca A, de Vries L, Boerjan W (2019) Lignin engineering in forest trees. Front Plant Sci 10:912. https://doi.org/10.3389/fpls.2019.00912

    Article  Google Scholar 

  41. 41.

    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  Google Scholar 

  42. 42.

    Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:312–319. https://doi.org/10.1016/j.pbi.2010.03.001

    Article  Google Scholar 

  43. 43.

    Sewalt VJH, Ni W, Jung HG, Dixon RA (1997) Lignin impact on fiber degradation: increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J Agric Food Chem 45:1977–1983. https://doi.org/10.1021/jf9609690

    Article  Google Scholar 

  44. 44.

    Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, Bukhman YV, Foster CE, Thrower N, Bruno LC, Moskvin OV, Johnson ET, Willhoit ME, Phutane M, Ralph J, Mansfield SD, Nicholson P, Sedbrook JC (2015) Effects of phenylalanine ammonia lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot 66:4317–4335. https://doi.org/10.1093/jxb/erv269

    Article  Google Scholar 

  45. 45.

    Van Acker R, Vanholme R, Storme V et al (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 6:46. https://doi.org/10.1186/1754-6834-6-46

    Article  Google Scholar 

  46. 46.

    Sykes RW, Gjersing EL, Foutz K et al (2015) Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase (C3′H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla × E. grandis leads to improved sugar release. Biotechnol Biofuels 8:128. https://doi.org/10.1186/s13068-015-0316-x

    Article  Google Scholar 

  47. 47.

    Cook C, Francocci F, Cervone F, Bellincampi D, Bolwell PG, Ferrari S, Devoto A (2015) Combination of pretreatment with white rot fungi and modification of primary and secondary cell walls improves saccharification. BioEnergy Res 8:175–186. https://doi.org/10.1007/s12155-014-9512-y

    Article  Google Scholar 

  48. 48.

    Jung JH, Kannan B, Dermawan H, Moxley GW, Altpeter F (2016) Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane. Plant Mol Biol 92:505–517. https://doi.org/10.1007/s11103-016-0527-y

    Article  Google Scholar 

  49. 49.

    Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Percival Zhang YH, Dixon RA, Zhao B (2011) Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625. https://doi.org/10.1111/j.1469-8137.2011.03830.x

    Article  Google Scholar 

  50. 50.

    Wang H, Xue Y, Chen Y, Li R, Wei J (2012) Lignin modification improves the biofuel production potential in transgenic Populus tomentosa. Ind Crops Prod 37:170–177. https://doi.org/10.1016/j.indcrop.2011.12.014

    Article  Google Scholar 

  51. 51.

    Xiang Z, Sen SK, Min D, Savithri D, Lu F, Jameel H, Chiang V, Chang HM (2017) Field-grown transgenic hybrid poplar with modified lignin biosynthesis to improve enzymatic saccharification efficiency. ACS Sustain Chem Eng 5:2407–2414. https://doi.org/10.1021/acssuschemeng.6b02740

    Article  Google Scholar 

  52. 52.

    Tsai C-J, Xu P, Xue L-J, Hu H, Nyamdari B, Naran R, Zhou X, Goeminne G, Gao R, Gjersing E, Dahlen J, Pattathil S, Hahn MG, Davis MF, Ralph J, Boerjan W, Harding SA (2020) Compensatory guaiacyl lignin biosynthesis at the expense of syringyl lignin in 4CL1-knockout poplar. Plant Physiol 183:123–136. https://doi.org/10.1104/pp.19.01550

    Article  Google Scholar 

  53. 53.

    Peng X-P, Wang B, Wen J-L et al (2016) Effects of genetic manipulation (HCT and C3H down-regulation) on molecular characteristics of lignin and its bioconversion to fermentable sugars. Cellulose Chem Technol 50:649–658

    Google Scholar 

  54. 54.

    Bhattarai K, Rajasekar S, Dixon RA, Monteros MJ (2018) Agronomic performance and lignin content of HCT down-regulated alfalfa (Medicago sativa L.). BioEnergy Res 11:505–515. https://doi.org/10.1007/s12155-018-9911-6

    Article  Google Scholar 

  55. 55.

    Liang Y, Eudes A, Yogiswara S, Jing B, Benites VT, Yamanaka R, Cheng-Yue C, Baidoo EE, Mortimer JC, Scheller HV, Loqué D (2019) A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnol Biofuels 12:130. https://doi.org/10.1186/s13068-019-1467-y

    Article  Google Scholar 

  56. 56.

    Fornalé S, Rencoret J, Garcia-Calvo L, Capellades M, Encina A, Santiago R, Rigau J, Gutiérrez A, del Río JC, Caparros-Ruiz D (2015) Cell wall modifications triggered by the down-regulation of coumarate 3-hydroxylase-1 in maize. Plant Sci 236:272–282. https://doi.org/10.1016/j.plantsci.2015.04.007

    Article  Google Scholar 

  57. 57.

    Takeda Y, Tobimatsu Y, Karlen SD, Koshiba T, Suzuki S, Yamamura M, Murakami S, Mukai M, Hattori T, Osakabe K, Ralph J, Sakamoto M, Umezawa T (2018) Downregulation of p-coumaroyl ester 3-hydroxylase in rice leads to altered cell wall structures and improves biomass saccharification. Plant J 95:796–811. https://doi.org/10.1111/tpj.13988

    Article  Google Scholar 

  58. 58.

    Vargas L, Cesarino I, Vanholme R, Voorend W, de Lyra Soriano Saleme M, Morreel K, Boerjan W (2016) Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (CSE) mutants. Biotechnol Biofuels 9:139. https://doi.org/10.1186/s13068-016-0551-9

    Article  Google Scholar 

  59. 59.

    Saleme M d LS, Cesarino I, Vargas L et al (2017) Silencing caffeoyl shikimate esterase affects lignification and improves saccharification in poplar. Plant Physiol 175:1040–1057. https://doi.org/10.1104/pp.17.00920

    Article  Google Scholar 

  60. 60.

    Ha CM, Escamilla-Trevino L, Yarce JCS, Kim H, Ralph J, Chen F, Dixon RA (2016) An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J 86:363–375. https://doi.org/10.1111/tpj.13177

    Article  Google Scholar 

  61. 61.

    Oliveira DM, Finger-Teixeira A, Rodrigues Mota T et al (2015) Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J 13:1224–1232. https://doi.org/10.1111/pbi.12292

    Article  Google Scholar 

  62. 62.

    Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–93. https://doi.org/10.1126/science.1250161

    Article  Google Scholar 

  63. 63.

    Getachew G, Laca EA, Putnam DH, Witte D, McCaslin M, Ortega KP, DePeters EJ (2018) The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production. J Sci Food Agric 98:4205–4215. https://doi.org/10.1002/jsfa.8942

    Article  Google Scholar 

  64. 64.

    Arnold AM, Cassida KA, Albrecht KA, Hall MH, Min D, Xu X, Orloff S, Undersander DJ, Santen E, Sulc RM (2019) Multistate evaluation of reduced-lignin alfalfa harvested at different intervals. Crop Sci 59:1799–1807. https://doi.org/10.2135/cropsci2019.01.0023

    Article  Google Scholar 

  65. 65.

    Xie H, Engle NL, Venketachalam S, Yoo CG, Barros J, Lecoultre M, Howard N, Li G, Sun L, Srivastava AC, Pattathil S, Pu Y, Hahn MG, Ragauskas AJ, Nelson RS, Dixon RA, Tschaplinski TJ, Blancaflor EB, Tang Y (2019) Combining loss of function of folylpolyglutamate synthetase1 and caffeoyl-CoA 3-O-methyltransferase1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnol Biofuels 12:108. https://doi.org/10.1186/s13068-019-1446-3

    Article  Google Scholar 

  66. 66.

    Bewg WP, Poovaiah C, Lan W, Ralph J, Coleman HD (2016) RNAi downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. Biotechnol Biofuels 9:270. https://doi.org/10.1186/s13068-016-0683-y

    Article  Google Scholar 

  67. 67.

    Tamasloukht B, Wong Quai Lam MS-J, Martinez Y, Tozo K, Barbier O, Jourda C, Jauneau A, Borderies G, Balzergue S, Renou JP, Huguet S, Martinant JP, Tatout C, Lapierre C, Barrière Y, Goffner D, Pichon M (2011) Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression. J Exp Bot 62:3837–3848. https://doi.org/10.1093/jxb/err077

    Article  Google Scholar 

  68. 68.

    Park S-H, Mei C, Pauly M, Ong RG, Dale BE, Sabzikar R, Fotoh H, Nguyen T, Sticklen M (2012) Downregulation of maize cinnamoyl-coenzyme A reductase via RNA interference technology causes brown midrib and improves ammonia fiber expansion-pretreated conversion into fermentable sugars for biofuels. Crop Sci 52:2687–2701. https://doi.org/10.2135/cropsci2012.04.0253

    Article  Google Scholar 

  69. 69.

    Van Acker R, Leple J-C, Aerts D et al (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci 111:845–850. https://doi.org/10.1073/pnas.1321673111

    Article  Google Scholar 

  70. 70.

    Giordano A, Liu Z, Panter SN, Dimech AM, Shang Y, Wijesinghe H, Fulgueras K, Ran Y, Mouradov A, Rochfort S, Patron NJ, Spangenberg GC (2014) Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a cinnamoyl CoA reductase gene. Transgenic Res 23:503–517. https://doi.org/10.1007/s11248-014-9784-1

    Article  Google Scholar 

  71. 71.

    De Meester B, de Vries L, Özparpucu M et al (2018) Vessel-specific reintroduction of cinnamoyl-CoA reductase1 (CCR1) in dwarfed ccr1 mutants restores vessel and xylary fiber integrity and increases biomass. Plant Physiol 176:611–633. https://doi.org/10.1104/pp.17.01462

    Article  Google Scholar 

  72. 72.

    De Meester B, Calderón BM, de Vries L et al (2020) Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele. Nat Commun 11:5020. https://doi.org/10.1038/s41467-020-18822-w

    Article  Google Scholar 

  73. 73.

    Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang ZY (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci 108:3803–3808. https://doi.org/10.1073/pnas.1100310108

    Article  Google Scholar 

  74. 74.

    Baxter HL, Mazarei M, Labbe N, Kline LM, Cheng Q, Windham MT, Mann DGJ, Fu C, Ziebell A, Sykes RW, Rodriguez M Jr, Davis MF, Mielenz JR, Dixon RA, Wang ZY, Stewart CN Jr (2014) Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnol J 12:914–924. https://doi.org/10.1111/pbi.12195

    Article  Google Scholar 

  75. 75.

    Li M, Pu Y, Yoo CG, Gjersing E, Decker SR, Doeppke C, Shollenberger T, Tschaplinski TJ, Engle NL, Sykes RW, Davis MF, Baxter HL, Mazarei M, Fu C, Dixon RA, Wang ZY, Neal Stewart C Jr, Ragauskas AJ (2017) Study of traits and recalcitrance reduction of field-grown COMT down-regulated switchgrass. Biotechnol Biofuels 10:12. https://doi.org/10.1186/s13068-016-0695-7

    Article  Google Scholar 

  76. 76.

    Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076. https://doi.org/10.1111/j.1467-7652.2012.00734.x

    Article  Google Scholar 

  77. 77.

    Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J 11:709–716. https://doi.org/10.1111/pbi.12061

    Article  Google Scholar 

  78. 78.

    Kannan B, Jung JH, Moxley GW, Lee SM, Altpeter F (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16:856–866. https://doi.org/10.1111/pbi.12833

    Article  Google Scholar 

  79. 79.

    Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, Mockler TC, Sarath G, Hazen SP (2013) Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol 13:61. https://doi.org/10.1186/1472-6750-13-61

    Article  Google Scholar 

  80. 80.

    Ho-Yue-Kuang S, Alvarado C, Antelme S, Bouchet B, Cézard L, le Bris P, Legée F, Maia-Grondard A, Yoshinaga A, Saulnier L, Guillon F, Sibout R, Lapierre C, Chateigner-Boutin AL (2016) Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality. J Exp Bot 67:227–237. https://doi.org/10.1093/jxb/erv446

    Article  Google Scholar 

  81. 81.

    Daly P, McClellan C, Maluk M, Oakey H, Lapierre C, Waugh R, Stephens J, Marshall D, Barakate A, Tsuji Y, Goeminne G, Vanholme R, Boerjan W, Ralph J, Halpin C (2019) RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family. Plant Biotechnol J 17:594–607. https://doi.org/10.1111/pbi.13001

    Article  Google Scholar 

  82. 82.

    Ciesielski PN, Resch MG, Hewetson B, Killgore JP, Curtin A, Anderson N, Chiaramonti AN, Hurley DC, Sanders A, Himmel ME, Chapple C, Mosier N, Donohoe BS (2014) Engineering plant cell walls: tuning lignin monomer composition for deconstructable biofuel feedstocks or resilient biomaterials. Green Chem 16:2627–2635. https://doi.org/10.1039/C3GC42422G

    Article  Google Scholar 

  83. 83.

    Zhang J, Tuskan GA, Tschaplinski TJ, Muchero W, Chen JG (2020) Transcriptional and post-transcriptional regulation of lignin biosynthesis pathway genes in Populus. Front Plant Sci 11:652. https://doi.org/10.3389/fpls.2020.00652

    Article  Google Scholar 

  84. 84.

    Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, Simmons BA, Pauly M, Hake S (2011) Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci 108:17550–17555. https://doi.org/10.1073/pnas.1113971108

    Article  Google Scholar 

  85. 85.

    Rubinelli PM, Chuck G, Li X, Meilan R (2013) Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenergy 54:312–321. https://doi.org/10.1016/j.biombioe.2012.03.001

    Article  Google Scholar 

  86. 86.

    Wang CY, Zhang SC, Yu Y, Luo YC, Liu Q, Ju C, Zhang YC, Qu LH, Lucas WJ, Wang X, Chen YQ (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J 12:1132–1142. https://doi.org/10.1111/pbi.12222

    Article  Google Scholar 

  87. 87.

    Liu Y, Yan J, Wang K, Li D, Han Y, Zhang W (2020) Heteroexpression of Osa-miR319b improved switchgrass biomass yield and feedstock quality by repression of PvPCF5. Biotechnol Biofuels 13:56. https://doi.org/10.1186/s13068-020-01693-0

    Article  Google Scholar 

  88. 88.

    Fan D, Li C, Fan C, Hu J, Li J, Yao S, Lu W, Yan Y, Luo K (2020) MicroRNA6443-mediated regulation of ferulate 5-hydroxylase gene alters lignin composition and enhances saccharification in Populus tomentosa. New Phytol 226:410–425. https://doi.org/10.1111/nph.16379

    Article  Google Scholar 

  89. 89.

    Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 6:e16416. https://doi.org/10.1371/journal.pone.0016416

    Article  Google Scholar 

  90. 90.

    Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang ZY (2011) Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnergy Res 4:153–164. https://doi.org/10.1007/s12155-010-9109-z

    Article  Google Scholar 

  91. 91.

    Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, Ruel K, Joseleau JP, Berenguer J, Puigdomènech P, Rigau J, Caparrós-Ruiz D (2012) Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol Plant 5:817–830. https://doi.org/10.1093/mp/ssr097

    Article  Google Scholar 

  92. 92.

    Bouvier d’Yvoire M, Bouchabke-Coussa O, Voorend W et al (2013) Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J 73:496–508. https://doi.org/10.1111/tpj.12053

    Article  Google Scholar 

  93. 93.

    Kim KH, Eudes A, Jeong K, Yoo CG, Kim CS, Ragauskas A (2019) Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Proc Natl Acad Sci 116:13816–13824. https://doi.org/10.1073/pnas.1904636116

    Article  Google Scholar 

  94. 94.

    Koshiba T, Murakami S, Hattori T, Mukai M, Takahashi A, Miyao A, Hirochika H, Suzuki S, Sakamoto M, Umezawa T (2013) CAD2 deficiency causes both brown midrib and gold hull and internode phenotypes in Oryza sativa L. cv. Nipponbare. Plant Biotechnol 30:365–373. https://doi.org/10.5511/plantbiotechnology.13.0527a

    Article  Google Scholar 

  95. 95.

    Martin AF, Tobimatsu Y, Kusumi R, Matsumoto N, Miyamoto T, Lam PY, Yamamura M, Koshiba T, Sakamoto M, Umezawa T (2019) Altered lignocellulose chemical structure and molecular assembly in cinnamyl alcohol dehydrogenase-deficient rice. Sci Rep 9:17153. https://doi.org/10.1038/s41598-019-53156-8

    Article  Google Scholar 

  96. 96.

    Scully ED, Gries T, Funnell-Harris DL, Xin Z, Kovacs FA, Vermerris W, Sattler SE (2016) Characterization of novel brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J Integr Plant Biol 58:136–149. https://doi.org/10.1111/jipb.12375

    Article  Google Scholar 

  97. 97.

    Van Acker R, Déjardin A, Desmet S et al (2017) Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1. Plant Physiol 175:1018–1039. https://doi.org/10.1104/pp.17.00834

    Article  Google Scholar 

  98. 98.

    Tobimatsu Y, Schuetz M (2019) Lignin polymerization: how do plants manage the chemistry so well? Curr Opin Biotechnol 56:75–81. https://doi.org/10.1016/j.copbio.2018.10.001

    Article  Google Scholar 

  99. 99.

    Blee KA, Choi JW, O’Connell AP et al (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64:163–176. https://doi.org/10.1016/s0031-9422(03)00212-7

    Article  Google Scholar 

  100. 100.

    Kavousi B, Daudi A, Cook CM, Joseleau JP, Ruel K, Devoto A, Bolwell GP, Blee KA (2010) Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymatic saccharification. Phytochemistry 71:531–542. https://doi.org/10.1016/j.phytochem.2010.01.008

    Article  Google Scholar 

  101. 101.

    Ligaba-Osena A, Hankoua B, DiMarco K, Pace R, Crocker M, McAtee J, Nagachar N, Tien M, Richard TL (2017) Reducing biomass recalcitrance by heterologous expression of a bacterial peroxidase in tobacco (Nicotiana benthamiana). Sci Rep 7:17104. https://doi.org/10.1038/s41598-017-16909-x

    Article  Google Scholar 

  102. 102.

    Furukawa T, Sawaguchi C, Watanabe A, Takahashi M, Nigorikawa M, Furukawa K, Iimura Y, Kajita S, Oguchi T, Ito Y, Sonoki T (2013) Application of fungal laccase fused with cellulose-binding domain to develop low-lignin rice plants. J Biosci Bioeng 116:616–619. https://doi.org/10.1016/j.jbiosc.2013.05.007

    Article  Google Scholar 

  103. 103.

    Iiyoshi R, Oguchi T, Furukawa T, Iimura Y, Ito Y, Sonoki T (2017) Expression of a fungal laccase fused with a bacterial cellulose-binding module improves the enzymatic saccharification efficiency of lignocellulose biomass in transgenic Arabidopsis thaliana. Transgenic Res 26:753–761. https://doi.org/10.1007/s11248-017-0043-0

    Article  Google Scholar 

  104. 104.

    Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of laccase4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137. https://doi.org/10.1105/tpc.110.082792

    Article  Google Scholar 

  105. 105.

    Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R (2015) Laccase5 is required for lignification of the Brachypodium distachyon Culm. Plant Physiol 168:192–204. https://doi.org/10.1104/pp.114.255489

    Article  Google Scholar 

  106. 106.

    Le Bris P, Wang Y, Barbereau C et al (2019) Inactivation of laccase8 and laccase5 genes in Brachypodium distachyon leads to severe decrease in lignin content and high increase in saccharification yield without impacting plant integrity. Biotechnol Biofuels 12:181. https://doi.org/10.1186/s13068-019-1525-5

    Article  Google Scholar 

  107. 107.

    Bryan AC, Jawdy S, Gunter L, Gjersing E, Sykes R, Hinchee MAW, Winkeler KA, Collins CM, Engle N, Tschaplinski TJ, Yang X, Tuskan GA, Muchero W, Chen JG (2016) Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release. Plant Biotechnol J 14:2010–2020. https://doi.org/10.1111/pbi.12560

    Article  Google Scholar 

  108. 108.

    Anderson NA, Tobimatsu Y, Ciesielski PN, Ximenes E, Ralph J, Donohoe BS, Ladisch M, Chapple C (2015) Manipulation of guaiacyl and syringyl monomer biosynthesis in an Arabidopsis cinnamyl alcohol dehydrogenase mutant results in atypical lignin biosynthesis and modified cell wall structure. Plant Cell 27:2195–2209. https://doi.org/10.1105/tpc.15.00373

    Article  Google Scholar 

  109. 109.

    de Vries B, Vanholme R, Van Acker R (2018) Stacking of a low-lignin trait with an increased guaiacyl and 5-hydroxyguaiacyl unit trait leads to additive and synergistic effects on saccharification efficiency in Arabidopsis thaliana. Biotechnol Biofuels 11:257. https://doi.org/10.1186/s13068-018-1257-y

    Article  Google Scholar 

  110. 110.

    Tong Z, Li H, Zhang R, Ma L, Dong J, Wang T (2015) Co-downregulation of the hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.). Plant Sci 239:230–237. https://doi.org/10.1016/j.plantsci.2015.08.005

    Article  Google Scholar 

  111. 111.

    Gallego-Giraldo L, Shadle G, Shen H, Barros-Rios J, Fresquet Corrales S, Wang H, Dixon RA (2016) Combining enhanced biomass density with reduced lignin level for improved forage quality. Plant Biotechnol J 14:895–904. https://doi.org/10.1111/pbi.12439

    Article  Google Scholar 

  112. 112.

    Kim H, Li Q, Karlen SD, Smith RA, Shi R, Liu J, Yang C, Tunlaya-Anukit S, Wang JP, Chang HM, Sederoff RR, Ralph J, Chiang VL (2020) Monolignol benzoates incorporate into the lignin of transgenic Populus trichocarpa depleted in C3H and C4H. ACS Sustain Chem Eng 8:3644–3654. https://doi.org/10.1021/acssuschemeng.9b06389

    Article  Google Scholar 

  113. 113.

    Fornalé S, Rencoret J, García-Calvo L, Encina A, Rigau J, Gutiérrez A, del Río JC, Caparros-Ruiz D (2017) Changes in cell wall polymers and degradability in maize mutants lacking 3’- and 5’-O-methyltransferases involved in lignin biosynthesis. Plant Cell Physiol 58:240–255. https://doi.org/10.1093/pcp/pcw198

    Article  Google Scholar 

  114. 114.

    Wu Z, Wang N, Hisano H, Cao Y, Wu F, Liu W, Bao Y, Wang ZY, Fu C (2019) Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnol J 17:836–845. https://doi.org/10.1111/pbi.13019

    Article  Google Scholar 

  115. 115.

    Bhatia R, Gallagher JA, Gomez LD, Bosch M (2017) Genetic engineering of grass cell wall polysaccharides for biorefining. Plant Biotechnol. J 15:1071–1092. https://doi.org/10.1111/pbi.12764

    Article  Google Scholar 

  116. 116.

    Eudes A, Sathitsuksanoh N, Baidoo EEK, George A, Liang Y, Yang F, Singh S, Keasling JD, Simmons BA, Loqué D (2015) Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnol J 13:1241–1250. https://doi.org/10.1111/pbi.12310

    Article  Google Scholar 

  117. 117.

    de Souza WR, Martins PK, Freeman J, Pellny TK, Michaelson LV, Sampaio BL, Vinecky F, Ribeiro AP, da Cunha BADB, Kobayashi AK, de Oliveira PA, Campanha RB, Pacheco TF, Martarello DCI, Marchiosi R, Ferrarese-Filho O, dos Santos WD, Tramontina R, Squina FM, Centeno DC, Gaspar M, Braga MR, Tiné MAS, Ralph J, Mitchell RAC, Molinari HBC (2018) Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytol 218:81–93. https://doi.org/10.1111/nph.14970

    Article  Google Scholar 

  118. 118.

    Buanafina MMO, Langdon T, Hauck B et al (2010) Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea). Plant Biotechnol J 8:316–331. https://doi.org/10.1111/j.1467-7652.2009.00485.x

    Article  Google Scholar 

  119. 119.

    Buanafina MMO, Buanafina MF, Dalton S et al (2020) Probing the role of cell wall feruloylation during maize development by differential expression of an apoplast targeted fungal ferulic acid esterase. PLoS ONE 15:e0240369. https://doi.org/10.1371/journal.pone.0240369

    Article  Google Scholar 

  120. 120.

    Buanafina MMO, Buanafina MF, Laremore T et al (2019) Characterization of feruloyl esterases in maize pollen. Planta 250:2063–2082. https://doi.org/10.1007/s00425-019-03288-y

    Article  Google Scholar 

  121. 121.

    Oliveira DM, Mota TR, Salatta FV, de Almeida GHG, Olher VGA, Oliveira MAS, Marchiosi R, Ferrarese-Filho O, dos Santos WD (2020) Feruloyl esterase activity and its role in regulating the feruloylation of maize cell walls. Plant Physiol Biochem 156:49–54. https://doi.org/10.1016/j.plaphy.2020.08.046

    Article  Google Scholar 

  122. 122.

    Lee S, Mo H, Kim JI, Chapple C (2017) Genetic engineering of Arabidopsis to overproduce disinapoyl esters, potential lignin modification molecules. Biotechnol Biofuels 10:40. https://doi.org/10.1186/s13068-017-0725-0

    Article  Google Scholar 

  123. 123.

    Morris P, Dalton S, Langdon T, Hauck B, de Buanafina MMO (2017) Expression of a fungal ferulic acid esterase in suspension cultures of tall fescue (Festuca arundinacea) decreases cell wall feruloylation and increases rates of cell wall digestion. Plant Cell, Tissue Organ Cult 129:181–193. https://doi.org/10.1007/s11240-017-1168-9

    Article  Google Scholar 

  124. 124.

    Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG (2012) Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem 287:8347–8355. https://doi.org/10.1074/jbc.M111.284497

    Article  Google Scholar 

  125. 125.

    Sibout R, Le Bris P, Legée F et al (2016) Structural redesigning Arabidopsis lignins into alkali-soluble lignins through the expression of p-coumaroyl-CoA:monolignol transferase PMT. Plant Physiol 170:1358–1366. https://doi.org/10.1104/pp.15.01877

    Article  Google Scholar 

  126. 126.

    Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, Bris P, Antelme S, Santoro N, Wilkerson CG, Sibout R, Lapierre C, Ralph J, Sedbrook JC (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77:713–726. https://doi.org/10.1111/tpj.12420

    Article  Google Scholar 

  127. 127.

    Smith RA, Cass CL, Mazaheri M, Sekhon RS, Heckwolf M, Kaeppler H, de Leon N, Mansfield SD, Kaeppler SM, Sedbrook JC, Karlen SD, Ralph J (2017) Suppression of cinnamoyl-CoA reductase increases the level of monolignol ferulates incorporated into maize lignins. Biotechnol Biofuels 10:109. https://doi.org/10.1186/s13068-017-0793-1

    Article  Google Scholar 

  128. 128.

    Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53. https://doi.org/10.1104/pp.106.094995

    Article  Google Scholar 

  129. 129.

    Oliveira DM, Mota TR, Oliva B, Segato F, Marchiosi R, Ferrarese-Filho O, Faulds CB, dos Santos WD (2019) Feruloyl esterases: biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresour Technol 278:408–423. https://doi.org/10.1016/j.biortech.2019.01.064

    Article  Google Scholar 

  130. 130.

    Molinari HBC, Pellny TK, Freeman J, Shewry PR, Mitchell RAC (2013) Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Front Plant Sci 4:50. https://doi.org/10.3389/fpls.2013.00050

    Article  Google Scholar 

  131. 131.

    Oliveira DM, Mota TR, Salatta FV, Marchiosi R, Gomez LD, McQueen-Mason SJ, Ferrarese-Filho O, dos Santos WD (2019) Designing xylan for improved sustainable biofuel production. Plant Biotechnol J 17(12):2225–2227. https://doi.org/10.1111/pbi.13150

    Article  Google Scholar 

  132. 132.

    Bartley LE, Peck ML, Kim S-R, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633. https://doi.org/10.1104/pp.112.208694

    Article  Google Scholar 

  133. 133.

    Li G, Jones KC, Eudes A, Pidatala VR, Sun J, Xu F, Zhang C, Wei T, Jain R, Birdseye D, Canlas PE, Baidoo EEK, Duong PQ, Sharma MK, Singh S, Ruan D, Keasling JD, Mortimer JC, Loqué D, Bartley LE, Scheller HV, Ronald PC (2018) Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnol 18:54. https://doi.org/10.1186/s12896-018-0464-8

    Article  Google Scholar 

  134. 134.

    de Souza WR, Pacheco TF, Duarte KE, Sampaio BL, de Oliveira Molinari PA, Martins PK, Santiago TR, Formighieri EF, Vinecky F, Ribeiro AP, da Cunha BADB, Kobayashi AK, Mitchell RAC, de Sousa Rodrigues Gambetta D, Molinari HBC (2019) Silencing of a BAHD acyltransferase in sugarcane increases biomass digestibility. Biotechnol Biofuels 12:111. https://doi.org/10.1186/s13068-019-1450-7

    Article  Google Scholar 

  135. 135.

    Mota TR, Souza WR, Oliveira DM, Martins PK, Sampaio BL, Vinecky F, Ribeiro AP, Duarte KE, Pacheco TF, Monteiro NKV, Campanha RB, Marchiosi R, Vieira DS, Kobayashi AK, Molinari PAO, Ferrarese-Filho O, Mitchell RAC, Molinari HBC, Santos WD (2020) Suppression of a BAHD acyltransferase decreases p-coumaroyl on arabinoxylan and improves biomass digestibility in the model grass Setaria viridis. Plant Journal. In press. https://doi.org/10.1111/tpj.15046

  136. 136.

    Pan X, Zhang B, Cobb G (2004) Transgenic plants: environmental benefits and risks. Physiol Mol Biol Plants. 11:13–32

    Google Scholar 

  137. 137.

    Bevilaqua JM, Finger-Teixeira A, Marchiosi R, Oliveira DM, Joia BM, Ferro AP, Parizotto ÂV, dos Santos WD, Ferrarese-Filho O (2019) Exogenous application of rosmarinic acid improves saccharification without affecting growth and lignification of maize. Plant Physiol Biochem 142:275–282. https://doi.org/10.1016/j.plaphy.2019.07.015

    Article  Google Scholar 

  138. 138.

    Parizotto AV, Ferro AP, Marchiosi R, Moreira-Vilar FC, Bevilaqua JM, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2020) Entacapone improves saccharification without affecting lignin and maize growth: an in silico, in vitro, and in vivo approach. Plant Physiol Biochem 151:421–428. https://doi.org/10.1016/j.plaphy.2020.03.053

    Article  Google Scholar 

  139. 139.

    Ferro AP, Flores Júnior R, Finger-Teixeira A, Parizotto AV, Bevilaqua JM, Oliveira DM, Molinari HBC, Marchiosi R, dos Santos WD, Seixas FAV, Ferrarese-Filho O (2020) Inhibition of Zea mays coniferyl aldehyde dehydrogenase by daidzin: a potential approach for the investigation of lignocellulose recalcitrance. Process Biochem 90:131–138. https://doi.org/10.1016/j.procbio.2019.11.024

    Article  Google Scholar 

  140. 140.

    Ferro AP, Parizotto AV, dos Santos WD, Marchiosi R, Seixas FAV, Ferrarese-Filho O (2020) Naringin inhibits the Zea mays coniferyl aldehyde dehydrogenase: an in silico and in vitro approach. J Plant Biochem Biotechnol 29:484–493. https://doi.org/10.1007/s13562-020-00561-0

    Article  Google Scholar 

  141. 141.

    Halpin C (2019) Lignin engineering to improve saccharification and digestibility in grasses. Curr Opin Biotechnol 56:223–229. https://doi.org/10.1016/j.copbio.2019.02.013

    Article  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. O. Ferrarese-Filho and R. Marchiosi are research fellows of the National Council for Scientific and Technological Development (CNPq). R. C. Sinzker is the recipient of the CNPq fellowship (Proc. 142275/2018-2) and D. M. Oliveira is the recipient of the CNPq post-doctoral fellowship (PDE 203311/2019-1)

Author information

Affiliations

Authors

Contributions

O. Ferrarese-Filho and W. D. dos Santos had the idea of the article. D. C. I. Martarello, A. M. Almeida, R. C. Sinzker, D. M. Oliveira, and R. Marchiosi performed bibliographic research, data analysis, and writing the article. D. M. Oliveira, W. D. dos Santos, and O. Ferrarese-Filho critically reviewed the work.

Corresponding author

Correspondence to Osvaldo Ferrarese-Filho.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martarello, D.C.I., Almeida, A.M., Sinzker, R.C. et al. The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01291-6

Download citation

Keywords

  • Lignocellulosic biomass
  • Plant cell wall
  • Phenylpropanoid pathway
  • Technological tricks
  • Monomers
  • S/G ratio