Chronological perspective on fermentative-hydrogen from hypothesis in early nineteenth century to recent developments: a review

Abstract

The first hypothetical hydrogen (H2) production from biological means was proposed in the early of nineteenth century. However, the biological H2 production technology did not received much attention until the anticipation of H2 production was practically reported through anaerobic digestion of cellulose using microbes present in the ruminant tract in 1930s. Later on, subsequent development on fermentative H2 production has been reported by researchers employing advanced technologies to the fermentative systems. The present review is envisioned to provide a technological devolvement’s towards fermentative H2 production from the late nineteenth to the present twenty-first century. The major technological aspects associated with H2 production through the fermentative process such as genetic engineering, nanomaterial implementations, immobilization techniques, and reactor configuration developments were highlighted in this review.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Kumar R, Strezov V, Weldekidan H, He J, Singh S, Kan T, Dastjerdi B (2020) Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew Sust Energ Rev. 123:109763

    Article  Google Scholar 

  2. 2.

    Grosspietsch D, Saenger M, Girod B (2019) Matching decentralized energy production and local consumption: a review of renewable energy systems with conversion and storage technologies. Wiley Interdisciplinary Reviews: Energy and Environment. 8(4):336

    Article  Google Scholar 

  3. 3.

    Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett 18(4):1049–1072

  4. 4.

    Qazi A, Hussain F, Rahim NA, Hardaker G, Alghazzawi D, Shaban K, Haruna K (2019) Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access. 23(7):63837–63851

    Article  Google Scholar 

  5. 5.

    Mishra P, Krishnan S, Rana S, Singh L, Sakinah M, Ab Wahid Z (2019) Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strateg Rev 24:27–37

    Article  Google Scholar 

  6. 6.

    Singh S, Bahari MB, Abdullah B, Phuong PT, Truong QD, Vo DV, Adesina AA (2018) Bi-reforming of methane on Ni/SBA-15 catalyst for syngas production: Influence of feed composition. Int J Hydrog Energy. 43(36):17230–17243

    Article  Google Scholar 

  7. 7.

    Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  Google Scholar 

  8. 8.

    Siang TJ, Singh S, Omoregbe O, Bach LG, Phuc NH, Vo DV (2018) Hydrogen production from CH4 dry reforming over bimetallic Ni–Co/Al2O3 catalyst. J Energy Inst 91(5):683–694

    Article  Google Scholar 

  9. 9.

    Kumar R, Strezov V, Kan T, Weldekidan H, He J, Jahan S (2019) Investigating the Effect of Mono-and Bimetallic/Zeolite Catalysts on Hydrocarbon Production during Bio-oil Upgrading from Ex Situ Pyrolysis of Biomass. Energ Fuel. 34(1):389–400

    Article  Google Scholar 

  10. 10.

    Singh S, Kumar R, Setiabudi HD, Nanda S, Vo DV (2018) Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Appl Catal A-Gen. 559:57–74

    Article  Google Scholar 

  11. 11.

    Mishra P, Ab Wahid Z, Zaid RM, Rana S, Tabassum S, Karim A, Singh L, Islam MA, Jaing X, Sakinah M (2020) Kinetics and statistical optimization study of bio-hydrogen production using the immobilized photo-bacterium. Biomass Convers Bior 10:1–12

  12. 12.

    Benemann J (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14(9):1101

    Article  Google Scholar 

  13. 13.

    Woodman H, Evans R (1938) The mechanism of cellulose digestion in the ruminant organism: IV. Further observations from in vitro studies of the behaviour of rumen bacteria and their bearing on the problem of the nutritive value of cellulose. The J Agricultural Sci. 28(1):43–63

    Article  Google Scholar 

  14. 14.

    Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol. 27(5):287–297

    Article  Google Scholar 

  15. 15.

    Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. The Journal of General Physiology 26(2):219–240

    Article  Google Scholar 

  16. 16.

    Gorrell T, Uffen R (1977) Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness. J Bacteriol. 131(2):533–543

    Article  Google Scholar 

  17. 17.

    Miyake J, Mao XY, Kawamura SU (1984) Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium butyricum. J Ferment Technol. 62(6):531–535

    Google Scholar 

  18. 18.

    Heyndrickx M, De Vos P, Hibau B, Stevens P, De Ley J (1987) Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridium butyricum strains in batch culture. Syst Appl Microbiol. 9:163–168

    Article  Google Scholar 

  19. 19.

    Stewart CS, MCPHERSON CA, Cansunar E (1987) The effect of lasalocid on glucose uptake, hydrogen production and the solubilization of straw by the anaerobic rumen fungus Neocallimastix frontalis. Lett Appl Microbiol. 5(1):5–7

    Article  Google Scholar 

  20. 20.

    Ferraiolo G, Del Borghi M, Solisio C, Gardi G (1984). Optimization criteria for the stabilization of sewage sludge and biogas production through anaerobic digestion: an example of an environmental biotechnology application. InHazardous and Industrial Waste Management and Testing: Third Symposium ASTM International.

  21. 21.

    Mahro B, Küsel AC, Grimme LH (1986) The significance of hydrogenase activity for the energy metabolism of green algae: anaerobiosis favours ATP synthesis in cells of Chlorella with active hydrogenase. Arch Microbiol. 144(1):91–95

    Article  Google Scholar 

  22. 22.

    Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett. 20(2):143–147

    Article  Google Scholar 

  23. 23.

    Mishra P, Thakur S, Mahapatra DM, Ab Wahid Z, Liu H, Singh L (2018) Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent–A novel approach. Int J Hydrog Energy 43(5):2666–2676

    Article  Google Scholar 

  24. 24.

    Chen KF, Li S, Zhang WX (2011) Renewable hydrogen generation by bimetallic zero valent iron nanoparticles. Chem Eng J. 170(2-3):562–567

    Article  Google Scholar 

  25. 25.

    Hickey RF, Vanderwielen J, Switzenbaum MS (1989) The effect of heavy metals on methane production and hydrogen and carbon monoxide levels during batch anaerobic sludge digestion. Water Res 23(2):207–218

    Article  Google Scholar 

  26. 26.

    Kumar V, Kothari R, Pathak VV, Tyagi SK (1995) Optimization of substrate concentration for sustainable biohydrogen production and kinetics from sugarcane molasses: Experimental and economical assessment. Waste Biomass Valoriz. 36:903–906

    Google Scholar 

  27. 27.

    Kobayashi T, Kimura B, Fujii T (2000) Haloanaerobium fermentans sp. nov., a strictly anaerobic, fermentative halophile isolated from fermented puffer fish ovaries. Int J Syst Evol Microbiol. 50(4):1621–1627

    Article  Google Scholar 

  28. 28.

    Kumar AN, Bandarapu AK, Mohan SV (2019) Microbial Electro-hydrolysis of Sewage Sludge for Acidogenic Production of Biohydrogen, Volatile Fatty Acids and Struvite. Chem Eng J 374:1264–1274

    Article  Google Scholar 

  29. 29.

    Barker HA (1936) On the biochemistry of the methane fermentation. Archiv für Mikrobiologie 7(1-5):404–419

    Article  Google Scholar 

  30. 30.

    Woodman H (1930) The rgle of cellulose in nutrition. Biol Rev 5(4):273–295

    Article  Google Scholar 

  31. 31.

    Winter J (1984) Anaerobic waste stabilization. Biotechnol Adv. 2(1):75–99

    Article  Google Scholar 

  32. 32.

    Von Feiten P, Zürrer H, Bachofen R (1985) Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum. Appl Microbiol Biot. 23(1):15–20

    Article  Google Scholar 

  33. 33.

    Tanisho S, Suzuki Y, Wakao N (1987) Fermentative hydrogen evolution by Enterobacter aerogenes strain E. 82005. Int J Hydrog Energy 12(9):623–627

    Article  Google Scholar 

  34. 34.

    Schropp SJ, Schwarz JR, LaRock PA (1987) Hydrogen production potential of fermentative microorganisms from the Sargasso Sea. Geomicrobiol J. 5(2):149–158

    Article  Google Scholar 

  35. 35.

    Sparling R, Daniels L (1987) The specificity of growth inhibition of methanogenic bacteria by bromoethanesulfonate. Can J Microbiol 33(12):1132–1136

    Article  Google Scholar 

  36. 36.

    Yokoi H, Mori S, Hirose J, Hayashi S, Takasaki Y (1988) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M [h] 19. Biotechnol Lett. 20(9):895–899

    Article  Google Scholar 

  37. 37.

    Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol. 42(12):155–162

    Article  Google Scholar 

  38. 38.

    Fang HH, Liu H, Zhang T (2002) Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78(1):44–52

    Article  Google Scholar 

  39. 39.

    Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol. 98(6):1183–1190

    Article  Google Scholar 

  40. 40.

    Ren N, Chua H, Chan ST, Sang Y, Wang Y, Sin N (2007) Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour Technol 98(9):1774–1780

    Article  Google Scholar 

  41. 41.

    Singh L, Siddiqui MF, Ahmad A, Rahim MH, Sakinah M, Wahid ZA (2013) Biohydrogen production from palm oil mill effluent using immobilized mixed culture. J Ind Eng Chem. 19(2):659–664

    Article  Google Scholar 

  42. 42.

    Maeda T, Sanchez-Torres V, Wood TK (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77(4):879–890

    Article  Google Scholar 

  43. 43.

    Jung KW, Kim DH, Kim SH, Shin HS (2011) Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 102(18):8612–8620

    Article  Google Scholar 

  44. 44.

    Mishra P, Thakur S, Singh L, Ab Wahid Z, Sakinah M (2016) Enhanced hydrogen production from palm oil mill effluent using two stage sequential dark and photo fermentation. I Int J Hydrog Energy 41(41):1843–18440

    Google Scholar 

  45. 45.

    Saratale GD, Saratale RG, Banu JR, Chang JS (2019) Biohydrogen production from renewable biomass resources. In: Pandey A (ed) Biomass, Biofuels and Biochemical: Biohydrogen, Second Edition, Elsevier, pp. 247–277

  46. 46.

    Mishra P, ab Wahid Z, Singh L, Zaid RM, Tabassum S, Sakinah M, Jiang X (2021) Synergistic effect of ultrasonic and microwave pretreatment on improved biohydrogen generation from palm oil mill effluent. Biomass Convers. Biorefin 12:1–8

  47. 47.

    Christoffersen G (2019) The rise of China in the global energy governance: an analysis of China's International Energy Policy. China Perspectives 2:15–24

  48. 48.

    Barbir F (2010) International association for hydrogen energy. In: Tietje C (ed) Handbook of Transnational Economic Governance Regimes, Brill Nijhoff Press, Leiden, Netherlands, pp 915–921

  49. 49.

    Yi KB, Harrison DP (2005) Low-pressure sorption-enhanced hydrogen production. Ind Eng Chem Res. 44(6):1665–1669

    Article  Google Scholar 

  50. 50.

    Kumar R, Kumar P (2018) Microbial fuel cells for wastewater treatment, bioremediation, and bioenergy production. In: Chandra P (ed) Advances in Microbial Biotechnology: Current Trends and Future Prospects. Apple Academic Press, Taylor & Francis Group, USA

  51. 51.

    Maeda T, Sanchez-Torres V, Wood TK (2008) Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1(1):30–39

    Article  Google Scholar 

  52. 52.

    Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65(5):520–529

    Article  Google Scholar 

  53. 53.

    Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76(2):444–495

    Article  Google Scholar 

  54. 54.

    McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F (2014) Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci. 111(38):E3948–E3956

    Article  Google Scholar 

  55. 55.

    Maeda T, Sanchez-Torres V, Wood TK (2012) Hydrogen production by recombinant Escherichia coli strains. Microb Biotechnol. 5(2):214–225

    Article  Google Scholar 

  56. 56.

    Vardar-Schara G, Maeda T, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol. 1(2):107–125

    Article  Google Scholar 

  57. 57.

    Zhao H, Lu Y, Wang L, Zhang C, Yang C, Xing X (2015) Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes. Bioresour Technol. 194:99–107

    Article  Google Scholar 

  58. 58.

    Baeyens J, Zhang H, Nie J, Appels L, Dewil R, Ansart R, Deng Y (2020) Reviewing the potential of bio-hydrogen production by fermentation. Renew Sust Energ Rev. 131:110023

    Article  Google Scholar 

  59. 59.

    Bisaillon A, Turcot J, Hallenbeck PC (2006) The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrog Energy 31(11):1504–1508

    Article  Google Scholar 

  60. 60.

    Maru B, López F, Kengen S, Constantí M, Medina F (2016) Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186:375–384

    Article  Google Scholar 

  61. 61.

    Mishra P, Thakur S, Singh L, Krishnan S, Sakinah M, Ab-Wahid Z (2017) Fermentative hydrogen production from indigenous mesophilic strain Bacillus anthracis PUNAJAN 1 newly isolated from palm oil mill effluent. Int J Hydrog Energy 42(25):16054–16063

    Article  Google Scholar 

  62. 62.

    Rosales-Colunga LM, Martínez-Antonio A (2014) Engineering Escherichia coli K12 MG1655 to use starch. Microb Cell Fact. 13(1):74

    Article  Google Scholar 

  63. 63.

    Penfold D, Macaskie L (2004) Production of H 2 from sucrose by Escherichia coli strains carrying the pUR400 plasmid, which encodes invertase activity. Biotechnol Lett. 26(24):1879–1883

    Article  Google Scholar 

  64. 64.

    Mathews J, Li Q, Wang G (2010) Characterization of hydrogen production by engineered Escherichia coli strains using rich defined media. Biotechnol Bioprocess Eng. 15(4):686–695

    Article  Google Scholar 

  65. 65.

    Show K, Lee D, Tay J, Lin C, Chang JS (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrog Energy 37(20):5616–15631

    Article  Google Scholar 

  66. 66.

    Calusinska M, Hamilton C, Monsieurs P, Mathy G, Leys N, Franck F, Joris B, Thonart P, Hiligsmann S, Wilmotte A (2015) Genome-wide transcriptional analysis suggests hydrogenase-and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009. Biotechnol Biofuels. 8(1):27

    Article  Google Scholar 

  67. 67.

    Liu X, Zhu Y, Yang ST (2006) Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog. 22(5):1265–1275

    Article  Google Scholar 

  68. 68.

    Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green AlgaChlamydomonas reinhardtii. Plant Physiol. 122(1):127–136

    Article  Google Scholar 

  69. 69.

    Stapleton JA, Swartz JR (2010) Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS one 5(12):15275

    Article  Google Scholar 

  70. 70.

    Le SH, Kim MS, Kang SG, Lee HS (2019) Biohydrogen production of obligate anaerobic archaeon Thermococcus onnurineus NA1 under oxic conditions via overexpression of frhAGB-encoding hydrogenase genes. Biotechnol Biofuels. 12(1):24

    Article  Google Scholar 

  71. 71.

    Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38(30):13172–13191

    Article  Google Scholar 

  72. 72.

    Patel SK, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol. 58(1):8–18

    Article  Google Scholar 

  73. 73.

    Yang G, Wang J (2018) Various additives for improving dark fermentative hydrogen production: A review. Renew Sust Energ Rev 95:130–146

    Article  Google Scholar 

  74. 74.

    Srivastava N, Srivastava M, Malhotra BD, Gupta VK, Ramteke P, Silva RN, Shukla P, Dubey KK, Mishra P (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnol Adv. 37(6):107384

    Article  Google Scholar 

  75. 75.

    Mishra P, Singh L, Islam MA, Nasrullah M, Sakinah AM, Ab-Wahid Z (2019) NiO and CoO nanoparticles mediated biological hydrogen production: Effect of Ni/Co oxide NPs-ratio. Bioresour Technol Rep. 5:364–368

    Article  Google Scholar 

  76. 76.

    Kumar G, Mathimani T, Rene ER, Pugazhendhi A (2019) Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. I Int J Hydrog Energy. 44(26):13106–13113

    Article  Google Scholar 

  77. 77.

    Shanmugam S, Hari A, Pandey A, Mathimani T, Felix L, Pugazhendhi A (2020) Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel 270:117453

    Article  Google Scholar 

  78. 78.

    Zhang Q, Li Y, Jiang H, Liu Z, Jia Q (2020) Enhanced biohydrogen production influenced by magnetic nanoparticles supplementation using enterobacter cloacae. Waste Biomass Valorization 13:1–9

  79. 79.

    Mudhoo A, Torres-Mayanga PC, Forster-Carneiro T, Sivagurunathan P, Kumar G, Komilis D, Sánchez A (2018) A review of research trends in the enhancement of biomass-to-hydrogen conversion. Waste Manag. 79:580–594

    Article  Google Scholar 

  80. 80.

    Zhao W, Zhang Y, Du B, Wei D, Wei Q, Zhao Y (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240–245

    Article  Google Scholar 

  81. 81.

    Khan MM, Lee J, Cho MH (2013) Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. Int J Hydrog Energy. 38(13):5243–5250

    Article  Google Scholar 

  82. 82.

    Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrog Energy 32(1):17–23

    Article  Google Scholar 

  83. 83.

    Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci. 431:194–199

    Article  Google Scholar 

  84. 84.

    Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol. 133:109–117

    Article  Google Scholar 

  85. 85.

    Taherdanak M, Zilouei H, Karimi K (2015) Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. Int J Hydrog Energy. 40(38):12956–12963

    Article  Google Scholar 

  86. 86.

    Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol. 102(17):7903–7909

    Article  Google Scholar 

  87. 87.

    Mohanraj S, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2014) Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: Effect of Pd (II) ion and phytogenic palladium nanoparticles. J Biotechnol 192:87–95

    Article  Google Scholar 

  88. 88.

    Mohanraj S, Anbalagan K, Rajaguru P, Pugalenthi V (2016) Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum. Int J Hydrog Energy 41(25):10639–10645

    Article  Google Scholar 

  89. 89.

    Mullai P, Yogeswari M, Sridevi K (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticles–A novel approach. Bioresour Technol. 141:212–219

    Article  Google Scholar 

  90. 90.

    Malik SN, Pugalenthi V, Vaidya AN, Ghosh PC, Mudliar SN (2014) Kinetics of nano-catalysed dark fermentative hydrogen production from distillery wastewater. Energy Procedia. 54:417–430

    Article  Google Scholar 

  91. 91.

    Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe 2+, and magnetite nanoparticles. Environ Sci Pollut Res Int. 24(9):8790–8804

    Article  Google Scholar 

  92. 92.

    Sekoai PT, Awosusi AA, Yoro KO, Singo M, Oloye O, Ayeni AO, Bodunrin M, Daramola MO (2018) Microbial cell immobilization in biohydrogen production: a short overview. Crit Rev Biotechnol. 38(2):157–171

    Article  Google Scholar 

  93. 93.

    Singh L, Wahid ZA, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M (2013) Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol. Process Biochem. 48(2):294–298

    Article  Google Scholar 

  94. 94.

    Martins SCS, Martins CM, Fiúza LMCG, Santaella ST (2013) Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. Afr J Biotechnol 12(28)

  95. 95.

    Vasilieva S, Lobakova E, Lukyanov A, Solovchenko A (2016) Immobilized microalgae in biotechnology. Moscow Univ Biol Sci Bull. 71(3):170–176

    Article  Google Scholar 

  96. 96.

    Singh L, Wahid ZA (2015) Methods for enhancing bio-hydrogen production from biological process: a review. J Ind Eng Chem. 21:70–80

    Article  Google Scholar 

  97. 97.

    Boshagh F, Rostami K, Moazami N (2019) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. Int J Hydrog Energy 44(28):14395–14405

    Article  Google Scholar 

  98. 98.

    Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas A (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol. 21(4):377–397

    Article  Google Scholar 

  99. 99.

    Singh L, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M, Wahid ZA (2013) Application of polyethylene glycol immobilized Clostridium sp. LS2 for continuous hydrogen production from palm oil mill effluent in upflow anaerobic sludge blanket reactor. Biochem Eng J. 70:158–165

    Article  Google Scholar 

  100. 100.

    Wu KJ, Chang JS, Chang C (2006) Biohydrogen production using suspended and immobilized mixed microflora. J Taiwan Inst Chem Eng. 37(6):545

    Google Scholar 

  101. 101.

    Ismail I, Hassan MA, Rahman AA, Soon CS (2011) Effect of retention time on biohydrogen production by microbial consortia immobilised in polydimethylsiloxane. Afr J Biotechnol. 10(4):601–609

    Google Scholar 

  102. 102.

    Wu KJ, Chang JS (2007) Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Process Biochem. 42(2):279–284

    MathSciNet  Article  Google Scholar 

  103. 103.

    Zhao L, Gl C, Wang AJ, Guo WQ, Liu BF, Ren H, Ren N, Ma F (2012) Enhanced bio-hydrogen production by immobilized Clostridium sp. T2 on a new biological carrier. Int J Hydrog Energy 37(1):162–166

    Article  Google Scholar 

  104. 104.

    Rai PK, Singh S, Asthana R (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol. 167(6):1540–1549

    Article  Google Scholar 

  105. 105.

    Seol E, Manimaran A, Jang Y, Kim S, Oh YK, Park S (2011) Sustained hydrogen production from formate using immobilized recombinant Escherichia coli SH5. Int J Hydrog Energy 36(14):8681–8686

    Article  Google Scholar 

  106. 106.

    Wu SY, Lin CN, Chang JS, Chang JS (2005) Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. Int J Hydrog Energy. 30(13-14):1375–1381

    Article  Google Scholar 

  107. 107.

    Wu KJ, Lo Y, Chen S, Chang J-S (2007) Fermentative production of biofuels with entrapped anaerobic sludge using sequential HRT shifting operation in continuous cultures. J Taiwan Inst Chem Eng. 38(3-4):205–213

    Article  Google Scholar 

  108. 108.

    Gokfiliz P, Karapinar I (2017) The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int J Hydrog Energy 42(4):2553–2561

    Article  Google Scholar 

  109. 109.

    Kirli B, Kapdan IK (2016) Selection of microorganism immobilization particle for dark fermentative biohydrogen production by repeated batch operation. Renew Energy. 87:697–702

    Article  Google Scholar 

  110. 110.

    Kumar G, Shobana S, Nagarajan D, Lee DJ, Lee KS, Lin CY, Chen CY, Chang JS (2018) Biomass based hydrogen production by dark fermentation—recent trends and opportunities for greener processes. Curr Opin Biotechnol 50:136–145

    Article  Google Scholar 

  111. 111.

    Pandey A, Srivastava S (2018). Fermentative hydrogen production. Bioenergy and Biofuels.

    Google Scholar 

  112. 112.

    Spier MR, Vandenberghe L, Medeiros ABP, Soccol CR (2011) Application of different types of bioreactors in bioprocesses. Bioreactors: Design, Properties and Applications; Nova Science Publishers, Hauppauge, pp 53–87

    Google Scholar 

  113. 113.

    Krishnan S, Din MFM, Taib SM, Ling YE, Puteh H, Mishra P, Nasrullah M, Sakinah M, Wahid ZA, Rana S (2019) Process constraints in sustainable bio-hythane production from wastewater. Bioresour Technol Rep. 5:359–363

    Article  Google Scholar 

  114. 114.

    Neshat SA, Mohammadi M, Najafpour GD, Lahijani P (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sust Energ Rev 79:308–322

    Article  Google Scholar 

  115. 115.

    Gunasekaran M, Merrylin J, Usman TM, Kumar G, Kim SH, Banu JR (2019) Biohydrogen production from industrial wastewater. In: Biofuels: Alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Academic Press. Elsevier, United States, pp 733–760

Download references

Acknowledgment

The author acknowledges the support of the Ministry of Higher Education Malaysia (Ref. code FRGS/1/2018/STG05/UMP/01/1; UMP Ref.: RDU190121). Puranjan Mishra would like to acknowledge the Postdoctoral Research Fellowship awarded by the Research and Innovation Department, Universiti Malaysia Pahang.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zularisam Ab Wahid or Lakhveer Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Wahid, Z.A., Karim, A. et al. Chronological perspective on fermentative-hydrogen from hypothesis in early nineteenth century to recent developments: a review. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-020-01180-4

Download citation

Keywords

  • Hydrogen
  • Technological developements
  • Genetic engineering
  • Microbial immobilization
  • Nanoparticles