Furfural production from rice husks within a biorefinery framework

Abstract

Furfural production at the industrial level began 100 years ago, but its reaction conditions continue to be studied. Data on furfural production from rice husks, a by-product of the rice-peeling process, are particularly limited. This raw material must be disposed of and is usually combusted for combined heat and power generation. However, in a biorefinery framework, this material can be used to generate value-added chemicals as well as power. This study evaluated furfural production from rice husks through acid hydrolysis the potential of the remaining solid to generate power and the formation of by-products. The variables were temperature (180–230 °C), sulphuric acid concentration (0.05–3% (w/w) sulphuric acid in the solution) and time (1–105 min). The results obtained for furfural yield, solid yield and particle size distribution indicated that the best conditions are 200 °C, 0.10% (w/w) acid and 40 min, which generated a furfural production amounting to 6.0% (w/w) of the oven-dried rice husk weight (55% of the theoretical yield) and a 60% solid yield. The gross heating value of the solid fraction remained considerably constant after the treatment, and the characteristics of the ash fraction were improved. This study gives furfural yields higher than those typically achieved at the industrial level (35–50% of the theoretical yield), with hydroxymethylfurfural and acetic, formic and levulinic acids as additional products, as well as the novelty of a remaining solid in good condition for power generation, making it a successful valorisation-prior-to-combustion approach.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Kamm B, Gruber PR, Kamm M (2010) Biorefineries-industrial processes and products: status quo and future directions. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  2. 2.

    Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172. https://doi.org/10.1038/nbt0208-169

    Article  Google Scholar 

  3. 3.

    Wyman CE, Lankey RL, Anastas PT (2002) Research and development needs for a fully sustainable biocommodity industry. In: Lankey RL, Anastas PT (eds) Advancing sustainability through green chemistry and engineering. American Chemical Society, Washington D.C., pp 31–46

    Google Scholar 

  4. 4.

    Baetge S, Kaltschmitt M (2018) Rice straw and rice husks as energy sources—comparison of direct combustion and biogas production. Biomass Convers Biorefinery 8:719–737. https://doi.org/10.1007/s13399-018-0321-y

    Article  Google Scholar 

  5. 5.

    Li Y, Ding X, Guo Y, Rong C, Wang L, Qu Y, Ma X, Wang Z (2011) A new method of comprehensive utilization of rice husk. J Hazard Mater 186:2151–2156. https://doi.org/10.1016/j.jhazmat.2011.01.013

    Article  Google Scholar 

  6. 6.

    Treasure T, Gonzalez R, Venditti R, Pu Y, Jameel H, Kelley S, Prestemon J (2012) Co-production of electricity and ethanol, process economics of value prior combustion. Energy Convers Manag 62:141–153. https://doi.org/10.1016/j.enconman.2012.04.002

    Article  Google Scholar 

  7. 7.

    de Jong E , Langeveld H, van Ree R (2009) IEA Bioenergy Task 42 on Biorefinery https://www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Booklet.pdf Accessed: 03 March 2020

  8. 8.

    Monroe KP (1921) The preparation and technical uses of furfural. J Ind Eng Chem 13:133–135

    Article  Google Scholar 

  9. 9.

    Marcotullio G (2011) The chemistry and technology of furfural production in modern lignocellulose-feedstock biorefineries. Delft University of Technology, Dissertation

    Google Scholar 

  10. 10.

    Biddy MJ, Scarlata C, Kinchin C (2016) Chemicals from biomass: a market assessment of bioproducts with near-term potential https://www.nrel.gov/docs/fy16osti/65509.pdf accessed: 15 February 2020

  11. 11.

    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554. https://doi.org/10.1039/b922014c

    Article  Google Scholar 

  12. 12.

    Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production- a review. Biomass Convers Biorefinery 7:247–274. https://doi.org/10.1007/s13399-017-0243-0

    Article  Google Scholar 

  13. 13.

    de Jong W, Marcotullio G (2010) Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. Int J Chem React Eng 8:. https://doi.org/10.2202/1542-6580.2174

  14. 14.

    Cai CM, Zhang T, Kumar R, Wyman CE (2014) Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J Chem Technol Biotechnol 89:2–10. https://doi.org/10.1002/jctb.4168

    Article  Google Scholar 

  15. 15.

    Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  16. 16.

    Ong HK, Sashikala M (2007) Identification of furfural synthesized from pentosan in rice husk. J Trop Agric food Sci 35:305–312

    Google Scholar 

  17. 17.

    IHS Markit (2016) Furfural - Chemical Economics Handbook (CEH) https://ihsmarkit.com/products/furfural-chemical-economics-handbook.html Accessed: 06 March 2020

  18. 18.

    Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr Res 71–85. https://doi.org/10.1016/0008-6215(91)84118-X, 217

  19. 19.

    Oefner PJ, Lanziner AH, Bonn G, Bobleter O (1992) Quantitative studies on furfural and organic acid formation during hydrothermal, acidic and alkaline degradation of D-xylose. Monatsh Chem 123:547–556. https://doi.org/10.1007/BF00816848

    Article  Google Scholar 

  20. 20.

    Williams DL, Dunlop AP (1948) Kinetics of furfural destruction in acidic aqueous media. Ind Eng Chem 40:239–241. https://doi.org/10.1021/ie50458a012

    Article  Google Scholar 

  21. 21.

    Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem 4:1002–1016. https://doi.org/10.1002/cssc.201000375

    Article  Google Scholar 

  22. 22.

    Peleteiro S, Rivas S, Alonso JL, Santos V, Parajó JC (2016) Furfural production using ionic liquids: a review. Bioresour Technol 202:181–191. https://doi.org/10.1016/j.biortech.2015.12.017

    Article  Google Scholar 

  23. 23.

    Danon B, Marcotullio G, De Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16:39–54. https://doi.org/10.1039/c3gc41351a

    Article  Google Scholar 

  24. 24.

    O’Brien P (Wondu B and TS (2006) Furfural chemicals and biofuels from agriculture. Barton

  25. 25.

    Win DT (2005) Furfural – gold from garbage. Assumpt Univ J Technol 8:185–190

    Google Scholar 

  26. 26.

    Gravitis J, Vedernikov N, Zandersons J, Kokorevics A (2001) Furfural and levoglucosan production from deciduous wood and agricultural wastes. ACS Symp Ser 784:110–122. https://doi.org/10.1021/bk-2001-0784.ch009

    Article  Google Scholar 

  27. 27.

    Dashtban M, Gilbert A, Fatehi P (2012) Production of furfural: overview and challenges. J Sci Technol For Prod Process 2:44–53

    Google Scholar 

  28. 28.

    Luo Y, Li Z, Li X, Liu X, Fan J, Clark JH, Hu C (2019) The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal Today 319:14–24. https://doi.org/10.1016/j.cattod.2018.06.042

    Article  Google Scholar 

  29. 29.

    Dutta S, De S, Saha B, Alam MI (2012) Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal Sci Technol 2:2025–2036. https://doi.org/10.1039/c2cy20235b

    Article  Google Scholar 

  30. 30.

    Agirrezabal-Telleria I, Gandarias I, Arias PL (2014) Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review. Catal Today 234:42–58. https://doi.org/10.1016/j.cattod.2013.11.027

    Article  Google Scholar 

  31. 31.

    Sangarunlert W, Piumsomboon P, Ngamprasertsith S (2007) Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Korean J Chem Eng 24:936–941. https://doi.org/10.1007/s11814-007-0101-z

    Article  Google Scholar 

  32. 32.

    Suxia R, Haiyan X, Jinling Z, Shunqing L, Xiaofeng H, Tingzhou L (2012) Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process. Carbohydr Res 359:1–6. https://doi.org/10.1016/j.carres.2012.07.006

    Article  Google Scholar 

  33. 33.

    Bhaumik P, Dhepe PL (2014) Exceptionally high yields of furfural from assorted raw biomass over solid acids. RSC Adv 4:26215–26221. https://doi.org/10.1039/c4ra04119d

    Article  Google Scholar 

  34. 34.

    Bizzi CA, Santos D, Sieben TC, Motta GV, Mello PA, Flores EMM (2019) Furfural production from lignocellulosic biomass by ultrasound-assisted acid hydrolysis. Ultrason Sonochem 51:332–339. https://doi.org/10.1016/j.ultsonch.2018.09.011

    Article  Google Scholar 

  35. 35.

    Delbecq F, Wang Y, Len C (2016) Conversion of xylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwave-assisted dehydration. J Mol Catal A Chem 423:520–525. https://doi.org/10.1016/j.molcata.2016.07.003

    Article  Google Scholar 

  36. 36.

    Mansilla HD, Baeza J, Urzúa S, Maturana G, Villaseñor J, Durán N (1998) Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol 66:189–193. https://doi.org/10.1016/S0960-8524(98)00088-1

  37. 37.

    Scapin E, Rambo MKD, Viana GCC et al (2019) Sustainable production of furfural and 5-hidroximetilfurfural from rice husks and soybean peel by using ionic liquid. Food Sci Technol 2061:1–5. https://doi.org/10.1590/fst.04419

    Article  Google Scholar 

  38. 38.

    Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47:1109–1122. https://doi.org/10.1016/0009-2509(92)80235-5

  39. 39.

    Garrote G, Falqué E, Domínguez H, Parajó JC (2007) Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour Technol 98:1951–1957. https://doi.org/10.1016/j.biortech.2006.07.049

    Article  Google Scholar 

  40. 40.

    Hilpmann G, Becher N, Pahner FA, Kusema B, Mäki-Arvela P, Lange R, Murzin DY, Salmi T (2016) Acid hydrolysis of xylan. Catal Today 259:376–380. https://doi.org/10.1016/j.cattod.2015.04.044

    Article  Google Scholar 

  41. 41.

    Wyman CE, Trajano HL (2013) Fundamentals of biomass pretreatment at low pH. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. John Wiley & Sons, Ltd., pp 103–123

    Google Scholar 

  42. 42.

    Yoon SY, Han SH, Shin SJ (2014) The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy 77:19–24. https://doi.org/10.1016/j.energy.2014.01.104

    Article  Google Scholar 

  43. 43.

    Fernandes MRS, De Sousa AMF, Furtado CRG (2017) Rice husk ash as filler in tread compounds to improve rolling resistance. Polimeros 27:55–61. https://doi.org/10.1590/0104-1428.2385

    Article  Google Scholar 

  44. 44.

    Chandrasekhar S, Satyanarayana KG, Pramada PN et al (2003) Processing, properties and applications of reactive silica from rice husk - an overview. J Mater Sci 38:3159–3168. https://doi.org/10.1023/A:1025157114800

    Article  Google Scholar 

  45. 45.

    Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sust Energ Rev 53:1468–1485. https://doi.org/10.1016/j.rser.2015.09.051

    Article  Google Scholar 

Download references

Funding

This study was funded by Agencia Nacional de Investigación e Innovación and GALOFER S.A.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Melissa Bariani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bariani, M., Boix, E., Cassella, F. et al. Furfural production from rice husks within a biorefinery framework. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00810-1

Download citation

Keywords

  • Furfural
  • Rice husk
  • Acid hydrolysis
  • Lignocellulosic material
  • Biorefinery