Pyrolysis of almond shells waste: effect of zinc oxide on kinetics and product distribution


In the present work, plain and zinc oxide-loaded almond shells were pyrolyzed in an indigenously manufactured pyrolysis system. The bio-oil produced as a result of catalytic and non-catalytic pyrolysis was characterized using gas chromatography mass spectrometry (GC-MS). Bio-oil produced from non-catalytic pyrolysis consists mainly of ethanol, acetic acid, 1-hydroxy-2-butanone, and 9-octadecenoic acid, methyl ester while bio-oil produced from catalytic pyrolysis consists of a large number of components ranging from C5 to C57. In order to study the kinetics of pyrolysis reaction, both the samples were subjected to thermogravimetric analysis (TGA) at heating rate of 5, 10, 15, and 20 °C/min from room temperature to 600 °C. A four steps degradation was observed, i.e., the first weight loss refers to removal of water molecules, the second weight loss is due to decomposition of hemicellulose, the third weight loss is owed to degradation of cellulose, while the last one is attributed to decomposition of lignin. Kinetic parameters were determined applying Ozawa-Flynn-wall (OFW) and Coats-Redfern (CR) equations. Activation energy (Ea) and frequency factor (A) were observed to increase with increase in fraction conversion which shows complex mechanism of reaction. It has been concluded that zinc oxide proved to be an effective catalyst vis-à-vis decrease in activation energy and quality of bio-oil produced.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Varma AK, Mondal P (2016) Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. Journal of Energy Resources Technology 138(5):052205

    Article  Google Scholar 

  2. 2.

    Doshi P, Srivastava G, Pathak G, Dikshit M (2014) Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel. Waste Manag 34(10):1836–1846

    Article  Google Scholar 

  3. 3.

    DEMİRBAŞ A (2005) Options and trends of thorium fuel utilization. Energy Sources 27(7):597–603

    Article  Google Scholar 

  4. 4.

    Schobert HH, Song C (2002) Chemicals and materials from coal in the 21st century. Fuel 81(1):15–32

    Article  Google Scholar 

  5. 5.

    Dresselhaus M, Thomas I (2001) Alternative energy technologies. Nature 414(6861):332–337

    Article  Google Scholar 

  6. 6.

    Demirbas A (2009) Global renewable energy projections. Energy Sources, Part B 4(2):212–224

    Article  Google Scholar 

  7. 7.

    Demirbas A (2008) Biomethanol production from organic waste materials. Energy Sources, Part A 30(6):565–572

    Article  Google Scholar 

  8. 8.

    Iakovou E, Karagiannidis A, Vlachos D, Toka A, Malamakis A (2010) Waste biomass-to-energy supply chain management: a critical synthesis. Waste Manag 30(10):1860–1870

    Article  Google Scholar 

  9. 9.

    Nisar J et al (2019) Kinetics of the pyrolysis of cobalt-impregnated sesame stalk biomass. Biomass Conversion and Biorefinery:1–9

  10. 10.

    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  Google Scholar 

  11. 11.

    McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    Article  Google Scholar 

  12. 12.

    Fouquet R (1998) The United Kingdom demand for renewable electricity in a liberalised market1. Energy Policy 26(4):281–293

    MathSciNet  Article  Google Scholar 

  13. 13.

    Chen P et al (2010) Utilization of almond residues. Int J Agric Biol Eng 3(4):1–18

    Google Scholar 

  14. 14.

    Pirayesh H, Khazaeian A (2012) Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Compos Part B 43(3):1475–1479

    Article  Google Scholar 

  15. 15.

    Ledbetter C (2008) Shell cracking strength in almond (Prunus dulcis [mill.] DA Webb.) and its implication in uses as a value-added product. Bioresour Technol 99(13):5567–5573

    Article  Google Scholar 

  16. 16.

    Esfahlan AJ, Jamei R, Esfahlan RJ (2010) The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem 120(2):349–360

    Article  Google Scholar 

  17. 17.

    Font R, Marcilla A, Verdú E, Devesa J (1991) Thermogravimetric kinetic study of the pyrolysis of almond shells and almond shells impregnated with CoCl2. J Anal Appl Pyrolysis 21(3):249–264

    Article  Google Scholar 

  18. 18.

    Grioui N, Halouani K, Agblevor FA (2014) Bio-oil from pyrolysis of Tunisian almond shell: comparative study and investigation of aging effect during long storage. Energy for Sustainable Development 21:100–112

    Article  Google Scholar 

  19. 19.

    Gonzalez JF et al (2005) Pyrolysis of almond shells. Energy applications of fractions. Ind Eng Chem Res 44(9):3003–3012

    Article  Google Scholar 

  20. 20.

    Marcilla A, Garcı́a-Garcı́a S, Asensio M, Conesa JA (2000) Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells. Carbon 38(3):429–440

    Article  Google Scholar 

  21. 21.

    Font R, Marcilla A, Devesa J, Verdú E (1994) Gas production by almond shell pyrolysis at high temperature. J Anal Appl Pyrolysis 28(1):13–27

    Article  Google Scholar 

  22. 22.

    Önal E, Uzun BB, Pütün AE (2014) Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Convers Manag 78:704–710

    Article  Google Scholar 

  23. 23.

    Marcilla A et al (2000) Thermal treatment and foaming of chars obtained from almond shells: kinetic study. Fuel 79(7):829–836

    Article  Google Scholar 

  24. 24.

    Demirbas A (2006) Effect of temperature on pyrolysis products from four nut shells. J Anal Appl Pyrolysis 76(1–2):285–289

    Article  Google Scholar 

  25. 25.

    Ali G et al (2019) Thermo-catalytic decomposition of polystyrene waste: comparative analysis using different kinetic models. Waste Manag Res:0734242X19865339

  26. 26.

    Nisar J, Ali G, Shah A, Shah MR, Iqbal M, Ashiq MN, Bhatti HN (2019) Pyrolysis of expanded waste polystyrene: influence of nickel-doped copper oxide on kinetics, thermodynamics and product distribution. Energy Fuel 33:12666–12678

    Article  Google Scholar 

  27. 27.

    Ceylan S, Topçu Y (2014) Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol 156:182–188

    Article  Google Scholar 

  28. 28.

    Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102(10):6230–6238

    Article  Google Scholar 

  29. 29.

    Nisar J, Ali G, Shah A, Iqbal M, Khan RA, Sirajuddin, Anwar F, Ullah R, Akhter MS (2019) Fuel production from waste polystyrene via pyrolysis: kinetics and products distribution. Waste Manag 88:236–247

    Article  Google Scholar 

  30. 30.

    Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnology 2012:1–6

    Article  Google Scholar 

  31. 31.

    Zhou J et al (2007) Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties. J Lumin 122:195–197

    Article  Google Scholar 

  32. 32.

    Liu Y, Jian-er Z, Larbot A, Persin M (2007) Preparation and characterization of nano-zinc oxide. J Mater Process Technol 189(1–3):379–383

    Article  Google Scholar 

  33. 33.

    Gnanasangeetha D, SaralaThambavani D (2013) One pot synthesis of zinc oxide nanoparticles via chemical and green method. Res J Mater Sci 2320:6055

    Google Scholar 

  34. 34.

    Wang H, Li C, Zhao H, Liu J (2013) Preparation of nano-sized flower-like ZnO bunches by a direct precipitation method. Adv Powder Technol 24(3):599–604

    Article  Google Scholar 

  35. 35.

    Grasset F, Saito N, Li D, Park D, Sakaguchi I, Ohashi N, Haneda H, Roisnel T, Mornet S, Duguet E (2003) Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. J Alloys Compd 360(1–2):298–311

    Article  Google Scholar 

  36. 36.

    Ghaedi M, Ansari A, Habibi MH, Asghari AR (2014) Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. J Ind Eng Chem 20(1):17–28

    Article  Google Scholar 

  37. 37.

    Nisar J, Ullah N, Awan IA, Iqbal M, Khan TA (2016) Pyrolysis–gas chromatography of sugar beet bagasse. Waste and Biomass Valorization 7(1):79–85

    Article  Google Scholar 

  38. 38.

    Hong, T. and S.-r. WANG, Experimental study of the effect of acid-washing pretreatment on biomass pyrolysis. J Fuel Chem Technol, 2009. 37(6): p. 668–672

  39. 39.

    Alves S, Figueiredo J (1988) Pyrolysis kinetics of lignocellulosic materials by multistage isothermal thermogravimetry. J Anal Appl Pyrolysis 13(1–2):123–134

    Article  Google Scholar 

  40. 40.

    Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuel 22(6):4292–4300

    Article  Google Scholar 

  41. 41.

    Horne PA, Williams PT (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75(9):1051–1059

    Article  Google Scholar 

  42. 42.

    Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–250

    Article  Google Scholar 

  43. 43.

    Lu Q, Yang XC, Dong CQ, Zhang ZF, Zhang XM, Zhu XF (2011) Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J Anal Appl Pyrolysis 92(2):430–438

    Article  Google Scholar 

  44. 44.

    Yu J, Paterson N, Blamey J, Millan M (2017) Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191:140–149

    Article  Google Scholar 

  45. 45.

    Aysu T, Küçük MM (2014) Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025

    Article  Google Scholar 

  46. 46.

    Aysu T, Durak H (2015) Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and character. J Anal Appl Pyrolysis 111:156–172

    Article  Google Scholar 

  47. 47.

    Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497

    Article  Google Scholar 

  48. 48.

    Wang J, Zhao H (2016) Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. J Therm Anal Calorim 124(3):1635–1640

    MathSciNet  Article  Google Scholar 

  49. 49.

    Lopez-Velazquez M et al (2013) Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrolysis 99:170–177

    Article  Google Scholar 

  50. 50.

    Lu C, Song W, Lin W (2009) Kinetics of biomass catalytic pyrolysis. Biotechnol Adv 27(5):583–587

    Article  Google Scholar 

Download references


Higher Education Commission, Pakistan is acknowledged for grant No. 20-1491.

Author information



Corresponding authors

Correspondence to Jan Nisar or Ghulam Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nisar, J., Rahman, A., Ali, G. et al. Pyrolysis of almond shells waste: effect of zinc oxide on kinetics and product distribution. Biomass Conv. Bioref. (2020).

Download citation


  • Pyrolysis of almond shell
  • Bioenergy
  • Thermal analysis
  • Kinetics parameters