Impact of soft hydrothermal pre-treatments on the olive mill solid waste characteristics and its subsequent anaerobic digestion

Abstract

The aim of this study was to investigate the effect of a soft hydrothermal pre-treatment (SHP) on olive mill solid waste (OMSW) and its subsequent anaerobic digestion (AD). OMSW was pre-treated in an autoclave at temperatures of 121 °C and 133 °C and excess pressures of 1.1 and 2.1 bars, respectively at heating times of 15, 20, and 30 min. The digestibility of pre-treated and untreated OMSW was determined in terms of methane potential through using biochemical methane potentials tests (BMP). Important solubilization of high-valuable compounds such as hydroxytyrosol and 3,4-dihydroxyphenylglycol was observed after pre-treatments. SHP showed a significant reduction in fiber length and width (p < 0.05). A higher polysaccharides solubilization was observed in treatment at 121 °C compared with that observed at 133 °C. SHP carried out at 121 °C, 1.1 bar (30 min) (pre-treatment A1), allowed obtaining the highest methane yield (380 ± 5 mL CH4/g VS), which was 12.3% higher than that obtained for untreated OMSW. Pearson correlation (PEC) and principal component analysis (PCA) were carried out. PEC showed a positive correlation with phenol vanillic acid and PCA grouped pre-treatment A1 with polysaccharides solubilization. The influence of the SHP conditions on the AD of OMSW was assessed through the monitoring of process performance and calculation of kinetic parameters by using the transference function model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    COI (2018) http://www.internationaloliveoil.org/estaticos/view/131-world-olive-oil-figures?lang=es_ES.Consejo Oleícola Internacional

  2. 2.

    AICA (2016) Informe de AICA sobre el mercado del aceite de oliva y el de la aceituna de mesa (campaña 2015/2016). Agencia de Información y Control Alimentarios. Ministerio de Agricultura, Alimentación y Medio Ambiente. España. Febrero, 2016

  3. 3.

    Rincón B, Bujalance L, Fermoso FG, Martín A, Borja R (2013) Biochemical methane potential of two-phase olive mill solid waste: influence of thermal pretreatment on the process kinetics. Bioresour Technol 140:249–255. https://doi.org/10.1016/j.biortech.2013.04.090

    Article  Google Scholar 

  4. 4.

    Motte JC, Escudié R, Beaufils N, Steyer JP, Bernet N, Delgenès JP, Dumas C (2014) Morphological structures of wheat straw strongly impacts its anaerobic digestion. Ind Crop Prod 52:695–701. https://doi.org/10.1016/j.indcrop.2013.11.038

    Article  Google Scholar 

  5. 5.

    Zala M, Solanki R, Bhale PV, Vaishak S (2019). In Press) Experimental investigation on anaerobic co-digestion of food waste and water hyacinth in batch type reactor under mesophilic condition. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-019-00522-1

  6. 6.

    Borja R, Rincón B, Raposo F (2006) Anaerobic biodegradation of two-phase olive mill solid wastes and liquid effluents: kinetic studies and process performance. J Chem Technol Biotechnol 81(9):1450–1462. https://doi.org/10.1002/jctb

    Article  Google Scholar 

  7. 7.

    Maamir W, Ouahabi Y, Poncin S, Li H-Z, Bensadok K (2017) Effect of Fenton pretreatment on anaerobic digestion of olive mill wastewater and olive mill solid waste in mesophilic conditions. Int J Green Energy 14:555–560

    Article  Google Scholar 

  8. 8.

    Gianico A, Braguglia CM, Mescia D, Mininni G (2013) Ultrasonic and thermal pretreatments to enhance the anaerobic bioconversion of olive husks. Bioresour Technol 147:623–626. https://doi.org/10.1016/j.biortech.2013.08.054

    Article  Google Scholar 

  9. 9.

    Ruggeri B, Battista F, Bernardi M, Fino D, Mancini G (2015) The selection of pretreatment options for anaerobic digestion (AD): a case study in olive oil waste production. Chem Eng J 259:630–639. https://doi.org/10.1016/j.cej.2014.08.035

    Article  Google Scholar 

  10. 10.

    Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397. https://doi.org/10.1016/j.biortech.2015.09.007

    Article  Google Scholar 

  11. 11.

    Kainthola J, Shariq M, Kalamdhad AS, Goud VV (2019). In Press) Comparative study of different thermal pretreatment techniques for accelerated methane production from rice straw. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00537-8

  12. 12.

    Jackowiak D, Frigon JC, Ribeiro T, Pauss A, Guiot S (2011) Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol 102:3535–3540. https://doi.org/10.1016/j.biortech.2010.11.069

    Article  Google Scholar 

  13. 13.

    Pansripong S, Arjharn W, Liplap P, Hinsui T (2019) Effect of ultrasonic pretreatment on biogas production from rice straw. Orient J Chem 4:35

    Google Scholar 

  14. 14.

    Jeong SY, Lee JW (2015) Chapter 5 - hydrothermal treatment. In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of biomass. Elsevier, Amsterdam, pp 61–74

    Google Scholar 

  15. 15.

    Garrote G, Domínguez H, Parajó J (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57(3):191–202. https://doi.org/10.1007/s001070050039

    Article  Google Scholar 

  16. 16.

    Ziemiński K, Romanowska I, Kowalska-Wentel M, Cyran M (2014) Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresour Technol 166:187–193. https://doi.org/10.1016/j.biortech.2014.05.02

    Article  Google Scholar 

  17. 17.

    Dos Santos Rocha MSR, Pratto B, de Sousa Júnior R, García Almeida RMR, Cruz AJGD (2017) A kinetic model for hydrothermal pretreatment of sugarcane straw. Bioresour Technol 228:176–185. https://doi.org/10.1016/j.biortech.2016.12.087

    Article  Google Scholar 

  18. 18.

    Abu Tayeh H, Levy-Shalev O, Azaizeh H, Dosoretz CG (2016) Subcritical hydrothermal pretreatment of olive mill solid waste for biofuel production. Bioresour Technol 199:164–172. https://doi.org/10.1016/j.biortech.2015.08.138

    Article  Google Scholar 

  19. 19.

    Jia X, Xi B, Li M, Liu D, Hou J, Hao Y, Meng F (2017) Metaproteomic analysis of the relationship between microbial community phylogeny, function and metabolic activity during biohydrogen-methane coproduction under short-term hydrothermal pretreatment from food waste. Bioresour Technol 245:1030–1039. https://doi.org/10.1016/j.biortech.2017.08.180

    Article  Google Scholar 

  20. 20.

    Ibrahim N, Yusoff MS, Aziz HA (2011) Food waste characteristics after autoclaving treatment. 2nd International Conference on Biotechnology and Food Science. IPCBEE, IACSIT, Press, Singapore, vol. 7

  21. 21.

    Pecorini I, Baldi F, Carnevale EA, Corti A (2016) Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Manag 56:143–150. https://doi.org/10.1177/0734242X15622815

    Article  Google Scholar 

  22. 22.

    Kim M, Kim BC, Nam K, Choi Y (2018) Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw. Biochem Eng J 140:108–114. https://doi.org/10.1016/j.bej.2018.09.012

    Article  Google Scholar 

  23. 23.

    Bougrier C, Delgenès JP, Carrère H (2008) Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 139(2):236–244. https://doi.org/10.1016/j.cej.2007.07.099

    Article  Google Scholar 

  24. 24.

    Ruffino B, Campo G, Genon G, Lorenzi E, Novarino D, Scibilia G, Zanetti M (2015) Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: performance, energy and economical assessment. Bioresour Technol 175:298–308

    Article  Google Scholar 

  25. 25.

    Monlau F, Barakat A, Steyer JP (2012) Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour Technol 120:241–247. https://doi.org/10.1016/j.biortech.2012.06.040

    Article  Google Scholar 

  26. 26.

    Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10. https://doi.org/10.1016/j.biortech.2003.10.005

    Article  Google Scholar 

  27. 27.

    Quéméneur M, Hamelin J, Barakat A, Steyer JP, Carrere H, Trably E (2012) Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int J Hydrog Energy 37(4):3150–3159. https://doi.org/10.5483/BMBRep.2013.46.5.038

    Article  Google Scholar 

  28. 28.

    Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32(5):934–951. https://doi.org/10.1016/j.biotechadv.2014.04.007

    Article  Google Scholar 

  29. 29.

    Kumar Biswal B, Huang H, Dai J, Chen GH, Wu D (2020) Impact of low-thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion. Bioresour Technol 297:122423

    Article  Google Scholar 

  30. 30.

    Raposo F, de la Rubia MA, Borja R, Alaiz M (2008) Assessment of a modified and optimised method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta 76(2):448–453. https://doi.org/10.1016/j.talanta.2008.03.030

    Article  Google Scholar 

  31. 31.

    APHA–AWWA–WEF (2005) Standard Methods for the Examination of Water and Wastewater, 22nd edn. American Water Works Association, Washington, DC

    Google Scholar 

  32. 32.

    Norm UNE-EN-ISO 5351 (2004)

  33. 33.

    Norm UNE 55-032-073

  34. 34.

    IUPAC (1992) Standard methods for the analysis of oils, fats and derivatives, first supplement to 7th ed. International union of pure and applied chemistry. Blackwell, Oxford

    Google Scholar 

  35. 35.

    Folin O, Ciocalteu V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–650

    Google Scholar 

  36. 36.

    De Ruiter JM, Burns JC (1987) Characterization of trifluoroacetic acid hydrolyzed subtropical forage grass cell walls. J Agric Food Chem 35(3):308–316. https://doi.org/10.1021/jf00075a006

    Article  Google Scholar 

  37. 37.

    Englyst HN, Cummings JH (1984) Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst. 109(7):937–942

    Article  Google Scholar 

  38. 38.

    Dische Z (1962) Color reactions of carbohydrates. In: Whistler RL, Wolfram ML (eds) Methods in carbohydrate chemistry, vol 40. Academic Press, New York, pp 477–512. https://doi.org/10.1021/ed040pA394

    Google Scholar 

  39. 39.

    Donoso-Bravo A, Perez-Elvira SI, Fernández-Polanco F (2010) Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem Eng J 160:607–614. https://doi.org/10.1016/j.cej.2010.03.082

    Article  Google Scholar 

  40. 40.

    Li L, Kong X, Yang F, Li D, Yuan Z, Sun Y (2012) Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Appl Biochem Biotechnol 166:1188–1191. https://doi.org/10.1007/s12010-011-9503-9

    Article  Google Scholar 

  41. 41.

    Fernández-Rodríguez MJ, De la Lama-Calvente D, Jiménez-Rodríguez A, Borja R, Rincón-Llorente B (2019) Influence of the cell wall of Chlamydomonas reinhardtii on anaerobic digestion yield and on its anaerobic co-digestion with a carbon-rich substrate. Process Saf Environ Prot 128:167–175. https://doi.org/10.1016/j.psep.2019.05.041

    Article  Google Scholar 

  42. 42.

    Jollife IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 374(2065). https://doi.org/10.1098/rsta.2015.0202

  43. 43.

    R Core Team R (2019) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  44. 44.

    Şenol H, Açıkel Ü, Demir S, Oda V (2020) Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel 263:116651. https://doi.org/10.1016/j.fuel.2019.116651

    Article  Google Scholar 

  45. 45.

    Kassaye S, Pant KK, Jain S (2017) Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps. Renew Energy 104:177–184. https://doi.org/10.1016/j.renene.2016.12.033

    Article  Google Scholar 

  46. 46.

    Vecchio S, Campanella L, Nuccilli A, Tomassetti M (2008) Kinetic study of thermal breakdown of triglycerides contained in extra-virgin olive oil. J Therm Anal Calorim 91:51–56. https://doi.org/10.1007/s10973-007-8373-4

    Article  Google Scholar 

  47. 47.

    Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Environ Sci 4:1306–1310. https://doi.org/10.19080/RAPSCI.2017.01.555551

    Article  Google Scholar 

  48. 48.

    Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour.Technol. 123:488–494. https://doi.org/10.1016/j.biortech.2012.06.113

    Article  Google Scholar 

  49. 49.

    Barakat A, Monlau F, Steyer JP, Carrere H (2012) Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethaneproduction. Bioresour Technol 104:90–99. https://doi.org/10.1016/j.biortech.2011.10.060

    Article  Google Scholar 

  50. 50.

    Christoforou E, Fokaides PA (2016) A review of olive mill solid wastes to energy utilization techniques. Waste Manag (Oxf). 49:346–363. https://doi.org/10.1016/j.wasman.2016.01.012

    Article  Google Scholar 

  51. 51.

    Zhang C, Houtman CJ, Zhu JI (2014) Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas-fir. Process Biochem 49(3):466–473. https://doi.org/10.1016/j.procbio.2013.12.017

    Article  Google Scholar 

  52. 52.

    Abdessalem M, García-Borrego A, Jiménez-Araujo A, Fernández-Bolaños J, Sindic M, Rodríguez-Gutiérrez G (2017) Phelonic extracts obtained from thermally treated secondary varietes of dates: antimicrobial and antioxidant properties. LWT Food Sci Technol 79:416–422. https://doi.org/10.1016/j.lwt.2017.01.064

    Article  Google Scholar 

  53. 53.

    Rubio-Senent F, Rodríguez-Gutiérrez G, Lama-Muñoz A, Fernández-Bolaños J (2013) Phenolic extract obtained from steam-treated olive oil waste: characterization and antioxidant activity. Food Sci Technol Int 54(1):114–124. https://doi.org/10.1021/jf303772p

    Article  Google Scholar 

  54. 54.

    Umamaheswari B, Rajaram R (2014) High strength phenol degradation by CSMB4 at microaerophilic condition. Int J Curr Microbiol App Sci 3(9):847–860

    Google Scholar 

  55. 55.

    Rubio-Senent F, Rodríguez-Gutiérrez G, Lama-Muñoz A, Fernández-Bolaños J (2012) New phenolic compounds hydrothermally extracted from the olive oil byproduct Alperujo and their Antioxidative activities. J Agric Food Chem 60(5):1175–1186. https://doi.org/10.1021/jf204223

    Article  Google Scholar 

  56. 56.

    Poirier S, Bize A, Bureau C, Bouchez T, Chapleur O (2016) Community shifts within anaerobic digestion microbiota facing phenol inhibition: towards early warning microbial indicators? Water Res 100:296–305

    Article  Google Scholar 

  57. 57.

    Bolado-Rodríguez S, Toquero C, Martín-Juárez J, Travaini R, García-Encina PA (2016) Effect of thermal, acid, alkaline and alkaline peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour Technol 201:182–190

    Article  Google Scholar 

  58. 58.

    Fernández-Rodríguez MJ, de la Lama-Calvente D, Jiménez-Rodríguez A, Borja R, Rincón-Llorente B (2019) Anaerobic co-digestion of olive mill solid waste and microalga Scenedesmus quadricauda: effect of different carbon to nitrogen ratios on process performance and kinetics. J Appl Phycol 31:3583–3591

    Article  Google Scholar 

  59. 59.

    Lizasoain J, Rincón M, Theuretzbacher F, Enguidanos R, Nielsen PJ, Potthast A, Zweckmair T, Gronauer A, Bauer A (2016) Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions. Biomass Bioenergy 95:84–91. https://doi.org/10.1016/j.biombioe.2016.09.021

    Article  Google Scholar 

  60. 60.

    Razavi AS, Hosseini Koupaie E, Azizi A, Hafez H, Elbeshbishy E (2019) Hydrothermal pretreatment of source separated organics for enhanced solubilization and biomethane recovery. Bioresour Technol 274:502–511. https://doi.org/10.1016/j.biortech.2018.12.024

    Article  Google Scholar 

  61. 61.

    Momayez F, Karimi K, Horváth IS (2018) Enhancing ethanol and methane production from rice straw by pretreatment with liquid waste from biogas plant. Energy Convers Manag 178:290–298. https://doi.org/10.1016/j.enconman.2018.10.023

    Article  Google Scholar 

  62. 62.

    Ghasimi DSM, Aboudi K, De Kreuk M, Zandvoort MH, Van Lier JB (2016) Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions. Chem Eng J 295:181–191. https://doi.org/10.1016/j.cej.2016.03.045

    Article  Google Scholar 

  63. 63.

    Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174. https://doi.org/10.1016/j.resconrec.2017.12.005

    Article  Google Scholar 

  64. 64.

    Pagliaccia P, Gallipoli A, Gianico A, Montecchio D, Braguglia CM (2016) Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: impact of thermal pretreatment on hydrogen and methane production. Int J Hydrog Energy 41(2):905–915. https://doi.org/10.1016/j.ijhydene.2015.10.061

    Article  Google Scholar 

  65. 65.

    Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sust Energ Rev 52:142–154. https://doi.org/10.1016/j.rser.2015.07.091

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Dr. Pere Mutjé and Dr. Quim Tarrés from the LEPAMAP Group, Department of Chemical Engineering, University of Girona, Girona (Spain), for the fiber analysis and data interpretation. The authors also wish to express their gratitude to Dr. Fátima Rubio, Dr. Ana Jiménez, Dr. Guillermo Rodríguez, and Dr. Joaquín Velasco from the Instituto de la Grasa (CSIC), Sevilla (Spain), for their help with part of the analysis.

Code availability

Sigma-Plot (version 11) statistical programming language R.

Funding

This study was funded by the Project of Excellence RNM-1970 funded by the regional government of Andalucía, Junta de Andalucía, Consejería de Economía, Innovación, Ciencia y Empleo, Andalucía, Spain, and the Ramón y Cajal Program (RYC-2011-08783 contract) funded by the Spanish Ministry of Economy and Competitiveness for providing financial support to Dr. Rincón.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Rincón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Rodríguez, M.J., de la Lama-Calvente, D., Jiménez-Rodríguez, A. et al. Impact of soft hydrothermal pre-treatments on the olive mill solid waste characteristics and its subsequent anaerobic digestion. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00759-1

Download citation

Keywords

  • Autoclaving
  • Soluble chemical oxygen demand
  • Polysaccharides
  • Phenol inhibition
  • Kinetic study