Cistus ladanifer as a source of chemicals: structural and chemical characterization

Abstract

Different biomass fractions of Cistus ladanifer and solid residues from essential oil distilleries were structurally and chemically evaluated. The C. ladanifer biomass fractions showed chemical differences mainly related to extractives (e.g., 10.8% and 53.7% in stems and leaves) and lignin (e.g., 21.2% and 15.4% in stems and leaves). The distillery residues were characterized by 41.5% extractives and 19.3% lignin, and polysaccharide glucose 51.7% and xylose 24.9% of total monosaccharides. The polar extracts had a high content of phenolics and revealed high antioxidant activity (IC50 3.2 μg/mL and 4.7 μg/mL in stems and cysts extracts).

The lignin structure showed a predominance of S units in the stem (H:G:S of 1:25:50) and a balanced proportion of H, G, and S units in leaves (H:G:S of 1:1.4:1).

The characteristics of C. ladanifer biomass allow several routes of valorization. The high extractive contents point out to the potential use as a source of phytochemicals by applying extraction procedures, while the remaining lignocellulosic material after extraction may be directed towards lignin and carbohydrates applications. The use of C. ladanifer biomass for an extractives-lignocellulosic-based biorefinery therefore represents a potential valorization that may contribute to additional revenue for the present essential oil distilleries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CL:

Cistus ladanifer

CLR:

Steam distillation residues

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

FRAP:

Ferric reducing antioxidant power

TEAC:

Trolox equivalent antioxidant capacity

GAE:

Gallic acid equivalent

QE:

Quercetin equivalent

CE:

Catechin equivalent

H:

p-Hydroxyphenyl lignin monomeric unit

G:

Guaiacyl lignin monomeric unit

S:

Syringyl lignin monomeric unit

CZE:

Capillary Zone Electrophoresis

References

  1. 1.

    Guzmán B, Vargas P (2009) Historical biogeography and character evolution of Cistaceae (Malvales) based on analysis of plastid rbcL and trnL-trnF sequences. Org Divers Evol 9(2):83–99. https://doi.org/10.1016/j.ode.2009.01.001

    Article  Google Scholar 

  2. 2.

    Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK (2014) Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front Chem 2:35. https://doi.org/10.3389/fchem.2014.00035

    Article  Google Scholar 

  3. 3.

    Gomes PB, Mata VG, Rodrigues AE (2005) Characterization of the Portuguese-grown Cistus ladanifer essential oil. J Essent Oil Res 17(2):160–165. https://doi.org/10.1080/10412905.2005.9698864

    Article  Google Scholar 

  4. 4.

    Weyerstahl P, Marschall H, Weirauch M, Thefeld K, Surburg H (1998) Constituents of commercial labdanum oil. Flavour Fragr J 13(5):295–318. https://doi.org/10.1002/(SICI)1099-1026(1998090)13:5<295::AID-FFJ751>3.0.CO;2-I

    Article  Google Scholar 

  5. 5.

    Greche H, Mrabet N, Zrira S, Ismaili-Alaou M, Benjilal B, Boukir A (2009) The volatiles of the leaf oil of Cistus ladanifer L. var. albiflorus and labdanum extracts of moroccan origin and their antimicrobial activities. J Essent Oil Res 21(2):166–173. https://doi.org/10.1080/10412905.2009.9700140

    Article  Google Scholar 

  6. 6.

    Surburg H, Panten J (2006) Natural raw materials in the flavor and fragrance industry. Common fragrance and flavor materials: preparation, properties and uses, 5th Ed. Horst pp 180-212. https://doi.org/10.1002/3527608214

  7. 7.

    Devappa RK, Rakshit SK, Dekker RF (2015) Forest biorefinery: potential of poplar phytochemicals as value-added co-products. Biotechnol Adv 33(6):681–716. https://doi.org/10.1016/j.biotechadv.2015.02.012

    Article  Google Scholar 

  8. 8.

    Miranda I, Lima L, Quilhó S, Knapic S, Pereira H (2016) The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Ind Crop Prod 82:81–87. https://doi.org/10.1016/j.indcrop.2015.12.003

    Article  Google Scholar 

  9. 9.

    Sartori CJ, Mota GS, Miranda I, Mori FA, Pereira H (2018) Tannin extraction and characterization of polar extracts from the barks of two Eucalyptus urophylla hybrids. BioResources 13(3):4820–4831

    Google Scholar 

  10. 10.

    Andrade D, Gil C, Breitenfeld L, Domingues F, Duarte AP (2009) Bioactive extracts from C. ladanifer and Arbutus unedo L. Ind Crop Prod 30:165–167. https://doi.org/10.1016/j.indcrop.2009.01.009

    Article  Google Scholar 

  11. 11.

    Zidane H, Elmiz M, Aouinti A, Tahani A, Wathelet J, Sindic M, Albachiri A (2013) Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Afr J Biotechnol 12(34):5314–5320. https://doi.org/10.5897/AJB2013.12868

    Article  Google Scholar 

  12. 12.

    Barrajón-Catalán E, Fernández-Arroyo S, Saura D, Guillén E, Fernández-Gutiérrez A, Segura-Carretero A, Micol V (2010) Cistaceae aqueous extracts containing ellagitannins show antioxidant and antimicrobial capacity, and cytotoxic activity against human cancer cells. Food Chem Toxicol 48:2273–2282. https://doi.org/10.1016/j.fct.2010.05.060

    Article  Google Scholar 

  13. 13.

    Tomás-Menor L, Morales-Soto A, Barrajon-Catalan E, Roldan-Segura C, Segura-Carretero A, Micol V (2013) Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food Chem Toxicol 55:313–322

    Article  Google Scholar 

  14. 14.

    Chaves N, Sosa T, Escudero JC (2001) Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J Chem Ecol 27(3):623–631. https://doi.org/10.1023/A:1010388905923

    Article  Google Scholar 

  15. 15.

    Herranz JM, Ferrandis P, Copete MA, Duro EM, Zalacaín A (2006) Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecol 184(2):259–272. https://doi.org/10.1007/s11258-005-9071-6

    Article  Google Scholar 

  16. 16.

    Belmokhtar M, Bouanani NE, Ziyyat A, Mekhfi H, Bnouham M, Aziz M, Matéo P, Fischmeister R, Legssyer A (2009) Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus. Biochem Biophys Res Commun 389(1):145–149. https://doi.org/10.1016/j.bbrc.2009.08.113

    Article  Google Scholar 

  17. 17.

    El Kabbaoui M, Chda A, Azdad O, Mejrhit N, Aarab L, Bencheikh R, Tazi A (2016) Evaluation of hypoglycemic and hypolipidemic activities of aqueous extract of Cistus ladaniferus in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 6(12):1044–1049. https://doi.org/10.1016/j.apjtb.2016.09.005

    Article  Google Scholar 

  18. 18.

    Ferro MD, Fernandes MC, Paulino AFC, Prozil SO, Gravitis J, Evtuguin DV, Xavier AMRB (2015) Bioethanol production from Cistus ladanifer after steam explosion pretreatment. Biochem Eng J 104:98–105. https://doi.org/10.1016/j.bej.2015.04.009

    Article  Google Scholar 

  19. 19.

    Alves-Ferreira J, Duarte LC, Fernandes MC, Pereira H, Carvalheiro F (2017) Hydrothermal treatments of Cistus ladanifer industrial residues obtained from essential oil distilleries. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-017-0127-3

  20. 20.

    TAPPI T 204 cm-97 (1997) Solvent extractives of wood and pulp. In: TAPPI test methods. TAPPI Press, Atlanta, GA

    Google Scholar 

  21. 21.

    TAPPI T 222 om-02 (2002) Acid-insoluble lignin in wood and pulp. In: TAPPI test methods. TAPPI Press, Atlanta GA

    Google Scholar 

  22. 22.

    TAPPI UM-250 (1991) Acid-soluble lignin in wood and pulp. In: TAPPI useful method. TAPPI Press, Atlanta, GA

    Google Scholar 

  23. 23.

    TAPPI T 211 om-02 (2002) Ash in wood, pulp, paper and paperboard: combustion at 525 °C. In: TAPPI test methods. TAPPI Press, Atlanta, GA

    Google Scholar 

  24. 24.

    Moniz P, Serralheiro C, Matos CT, Boeriu CG, Frissen AE, Duarte LC, Roseiro LB, Pereira H, Carvalheiro F (2018) Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw. Process Biochem 65:136–145. https://doi.org/10.1016/j.procbio.2017.11.012

    Article  Google Scholar 

  25. 25.

    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Google Scholar 

  26. 26.

    Zhishen J, Mengcheng T, Jinming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  Google Scholar 

  27. 27.

    Abdalla S, Pizzi A, Ayed N, Bouthoury FC, Charrier B, Bahabri F, Ganash A (2011) MALDI-TOF analysis of Aleppo pine (Pinus halepensis) bark tannin. Bioresources 9(2):3396–3406

    Google Scholar 

  28. 28.

    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  29. 29.

    Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

    Article  Google Scholar 

  30. 30.

    Șen AU, Miranda I, Ferreira J, Lourenço A, Pereira H (2018) Chemical composition and cellular structure of ponytail palm (Beaucarnea recurvata) cork. Ind Crop Prod 214:845–855. https://doi.org/10.1016/j.indcrop.2018.08.057

    Article  Google Scholar 

  31. 31.

    Schweingruber FH, Börner A, Schulze E-D (2011) Atlas of stem anatomy in herbs, shrubs and trees Vol.1. Springer-Verlag, Berlin Heidelberg 495p

    Google Scholar 

  32. 32.

    Crivellaro A, Schweingruber FH (2013) Atlas of wood, bark and pith anatomy of Eastern Mediterranean trees and shrubs with a special focus on Cyprus. Springer-Verlag, Berlin Heidelberg 583p

    Google Scholar 

  33. 33.

    De Micco V, Aronne G (2007) Anatomical features, monomer lignin composition and accumulation of phenolics in 1-year-old branches of the Mediterranean Cistus ladanifer L. Bot J Linn Soc 155:361–371. https://doi.org/10.1111/j.1095-8339.2007.00705.x

    Article  Google Scholar 

  34. 34.

    Mahmoudi H, Aouadhi C, Kaddour R, Gruber M, Zargouni H, Zaouali W, Hamida MB, Ouerghi Z, Hosni K (2016) Comparison of antioxidant and antimicrobial activities of two cultivated Cistus species from Tunisia. Biosci J 32(1):226–237. https://doi.org/10.14393/BJ-v32n1a2016-30208

    Article  Google Scholar 

  35. 35.

    Amensour M, Sendra E, Pérez-Alvarez JA, Skali-Snhaji N, Abrini J, Fernández-López J (2010) Antioxidant activity and chemical content of methanol and ethanol extracts from leaves of rockrose (Cistus ladaniferus). Plant Foods Hum Nutr 65:170–178. https://doi.org/10.1007/s11130-010-0168-2

    Article  Google Scholar 

  36. 36.

    Rebaya A, Belghith SI, Cherif JK, Ayadi MT (2016) Total phenolic compounds and antioxidant potential of rockrose (Cistus salviifolius) leaves and flowers grown in Tunisia. IJPPR 8(2):327–331

    Google Scholar 

  37. 37.

    Chaves N, Escudero JC, Gutierrez-Merino C (1997) Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J Chem Ecol 23(3):579–603. https://doi.org/10.1023/B:JOEC.0000006398.79306.09

    Article  Google Scholar 

  38. 38.

    Guimarães R, Sousa MJ, Ferreira IC (2010) Contribution of essential oils and phenolics to the antioxidant properties of aromatic plants. Ind Crop Prod 32(2):152–156. https://doi.org/10.1016/j.indcrop.2010.04.011

    Article  Google Scholar 

  39. 39.

    Sánchez-Vioque R, Polissiou M, Astraka K, De los Mozos-Pascual M, Tarantilis P, Herraiz-Peñalver D, Santana-Méridas O (2013) Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Ind Crop Prod 49:150–159. https://doi.org/10.1016/j.indcrop.2013.04.053

    Article  Google Scholar 

  40. 40.

    Guerreiro O, Dentinho MTP, Moreira OC, Guerra AR, Ramos PAB, Bessa RJB, Duarte MF, Jerónimo E (2016) Potential of Cistus ladanifer L.(rockrose) in small ruminant diets–effect of season and plant age on chemical composition, in vitro digestibility and antioxidant activity. Grass Forage Sci 71(3):437–447. https://doi.org/10.1111/gfs.12188

    Article  Google Scholar 

  41. 41.

    Nicoletti M, Toniolo C, Venditti A, Bruno M, Jemia MB (2015) Antioxidant activity and chemical composition of three Tunisian Cistus: Cistus monspeliensis, Cistus villosus and Cistus libanotis. Nat Prod Res 29(3):223–230. https://doi.org/10.1080/14786419.2014.947486

    Article  Google Scholar 

  42. 42.

    El Euch SK, Bouajila J, Bouzouita N (2015) Chemical composition, biological and cytotoxic activities of Cistus salviifolius flower buds and leaves extracts. Ind Crop Prod 76:1100–1105. https://doi.org/10.1016/j.indcrop.2015.08.033

    Article  Google Scholar 

  43. 43.

    Alves-Ferreira J, Duarte LC, Lourenço A, Roseiro LB, Fernandes MC, Pereira H, Carvalheiro F (2019) Distillery residues from Cistus ladanifer (rockrose) as feedstock for the production of added-value phenolic compounds and hemicellulosic oligosaccharides. Bioenergy Res. https://doi.org/10.1007/s12155-019-09975-8

  44. 44.

    Lourenço A, Pereira H (2018) Compositional variability of lignin in biomass. In: Lignin-Trends and Applications. M Poletto (Eds) In Tech https://doi.org/10.5772/intechopen.71208

  45. 45.

    Oliveira L, Cordeiro N, Evtuguin DV, Torres IC, Silvestre AJD (2007) Chemical composition of different morphological parts from ‘Dwarf Cavendish’banana plant and their potential as a non-wood renewable source of natural products. Ind Crop Prod 26(2):163–172. https://doi.org/10.1016/j.indcrop.2007.03.002

    Article  Google Scholar 

  46. 46.

    Lourenço A, Rencoret J, Chemetova C, Gominho J, Gutiérrez A, del Río JC, Pereira H (2016) Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L. Front Plant Sci 7:1612. https://doi.org/10.3389/fpls.2016.01612

    Article  Google Scholar 

  47. 47.

    De Wild PJ, Huijgen WJJ, Heeres HJ (2012) Pyrolysis of wheat straw-derived organosolv lignin. J Anal Appl Pyrolysis 93:95–103. https://doi.org/10.1016/j.jaap.2011.10.002

    Article  Google Scholar 

  48. 48.

    Barros L, Dueñas M, Alves CT, Silva S, Henriques M, Santos-Buelga C, Ferreira IC (2013) Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind Crop Prod 41:41–45. https://doi.org/10.1016/j.fct.2013.01.006

    Article  Google Scholar 

  49. 49.

    Chaves N, Ríos JJ, Gutierrez C, Escudero JC, Olías JM (1998) Analysis of secreted flavonoids of Cistus ladanifer L. by high-performance liquid chromatography–particle beam mass spectrometry. J Chromatogr A 799(1–2):111–115. https://doi.org/10.1016/S0021-9673(97)01042-X

    Article  Google Scholar 

  50. 50.

    Fernández-Arroyo S, Barrajón-Catalán E, Micol V, Segura-Carretero A, Fernández-Gutiérrez A (2010) High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a Cistus ladanifer aqueous extract. Phytochem Anal 21(4):307–313. https://doi.org/10.1002/pca.1200

    Article  Google Scholar 

  51. 51.

    Ramalho PS, de Freitas VA, Macedo A, Silva G, Silva A (1999) Volatile components of Cistus ladanifer leaves. Flavour Fragr J 14(5):300–302. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<300::AID-FFJ830>3.0.CO;2-X

    Article  Google Scholar 

  52. 52.

    Santos ES, Balseiro-Romero M, Abreu MM, Macías F (2016) Bioextracts of Cistus ladanifer L. growing in São Domingos mine as source of valuable compounds. J Geochem Explor 174:84–90. https://doi.org/10.1016/j.gexplo.2016.07.004

    Article  Google Scholar 

  53. 53.

    Morales-Soto A, Oruna-Concha MJ, Elmore JS, Barrajón-Catalán E, Micol V, Roldán C, Segura-Carretero A (2015) Volatile profile of Spanish Cistus plants as sources of antimicrobials for industrial applications. Ind Crop Prod 74:425–433. https://doi.org/10.1016/j.indcrop.2015.04.034

    Article  Google Scholar 

Download references

Acknowledgments

Júnia Alves-Ferreira is grateful to CAPES Foundation, Ministry of Education of Brazil, Brasília – DF 700 40−020, Brazil (doctoral scholarship – Process 9109/13 − 7). This work was supported by QREN Project “Biomassa Endógena.” Centro de Estudos Florestais is a research unit funded by FCT - Fundação para a Ciência e a Tecnologia (UID/AGR/00239/2019). Instituto de Ciências Agrárias e Ambientais Mediterrânicas is a research unit funded by FCT (UID/AGR/00115/2013). Ana Lourenço acknowledges a post-doc grant by FCT (SPRH/BPD/95385/2013). The authors thank Joaquina Silva and Lídia Silva for their technical support and Cristiana Alves for the preparation of the microtome sections.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isabel Miranda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alves-Ferreira, J., Miranda, I., Duarte, L.C. et al. Cistus ladanifer as a source of chemicals: structural and chemical characterization. Biomass Conv. Bioref. 10, 325–337 (2020). https://doi.org/10.1007/s13399-019-00448-8

Download citation

Keywords

  • Extractives
  • Antioxidant activity
  • Polysaccharides
  • Lignin
  • Biorefinery