Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification

Abstract

The study reports evaluation of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification (SCMT). Characterization of biomass feedstock quality on fatty acid methyl esters (FAME) yield was performed based on two key parameters: intracellular lipid content and water content of the biomass. Statistical optimization of transesterification parameters, e.g., lipid content, water content of biomass, and methanol loading, predicted the optimum values of 52% (w/w), 5.75 mL g−1, and 115 mL g−1, respectively, with maximum FAME yield of 96.9%. This improved FAME yield was achieved with much lower methanol loading and higher water content per gram of biomass and hence offers elevated economic feasibility via minimizing the utilization of alcohol and enabling direct conversion of wet algal biomass into biodiesel. FAME produced via SCMT satisfied most of the biodiesel properties as per ASTM and European standards thereby referring to good quality biodiesel.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12:1–11. https://doi.org/10.3390/en12060964

    Article  Google Scholar 

  2. 2.

    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  Google Scholar 

  3. 3.

    Costa JAV, Linde GA, Atala DIP, Mibielli GM, Kruger RT (2000) Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J Microbiol Biotechnol 16:15–18. https://doi.org/10.1023/A:1008992826344

    Article  Google Scholar 

  4. 4.

    Razzak SA, Ali SAM, Hossain MM, deLasa H (2017) Biological CO2 fixation with production of microalgae in wastewater – a review. Renew Sust Energ Rev 76:379–390. https://doi.org/10.1016/j.rser.2017.02.038

    Article  Google Scholar 

  5. 5.

    Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. https://doi.org/10.1021/es900705j

    Article  Google Scholar 

  6. 6.

    Patil PD, Reddy H, Muppaneni T, Schaub T, Holguin FO, Cooke P, Lammers P, Nirmalakhandan N, Li Y, Lu X, Deng S (2013) In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresour Technol 139:308–315. https://doi.org/10.1016/j.biortech.2013.04.045

    Article  Google Scholar 

  7. 7.

    Nan Y, Liu J, Lin R, Tavlarides LL (2015) Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: process optimization. J Supercrit Fluids 97:174–182. https://doi.org/10.1016/j.supflu.2014.08.025

    Article  Google Scholar 

  8. 8.

    Patil PD, Reddy H, Muppaneni T, Deng S (2017) Biodiesel fuel production from algal lipids using supercritical methyl acetate (glycerin-free) technology. Fuel 195:201–207. https://doi.org/10.1016/j.fuel.2016.12.060

    Article  Google Scholar 

  9. 9.

    Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energ Combust 31:466–487. https://doi.org/10.1016/j.pecs.2005.09.001

    Article  Google Scholar 

  10. 10.

    He H, Wang T, Zhu S (2007) Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86:442–447. https://doi.org/10.1016/j.fuel.2006.07.035

    Article  Google Scholar 

  11. 11.

    He H, Sun S, Wang T, Zhu S (2007) Transesterification kinetics of soybean oil for production of biodiesel in supercritical methanol. J Am Oil Chem Soc 84:399–404. https://doi.org/10.1007/s11746-007-1042-8

    Article  Google Scholar 

  12. 12.

    Joelianingsih MH, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan AH, Abdullah K (2008) Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: a kinetic study. Renew Energy 33:1629–1636. https://doi.org/10.1016/j.renene.2007.08.011

    Article  Google Scholar 

  13. 13.

    Kiss FE, Micic RD, Tomić MD, Nikolic-Djorić EB, Simikić M (2014) Supercritical transesterification: impact of different types of alcohol on biodiesel yield and LCA results. J Supercrit Fluids 86:23–32. https://doi.org/10.1016/j.supflu.2013.11.015

    Article  Google Scholar 

  14. 14.

    Varma MN, Madras G (2007) Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind Eng Chem Res 46:1–6. https://doi.org/10.1021/ie0607043

    Article  Google Scholar 

  15. 15.

    Vieitez I, da Silva C, Alckmin I, Borges GR, Corazza FC, Oliveira JV, Grompone MA, Jachmanián I (2008) Effect of temperature on the continuous synthesis of soybean esters under supercritical ethanol. Energy Fuel 23:558–563. https://doi.org/10.1021/ef800640t

    Article  Google Scholar 

  16. 16.

    Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102:118–122. https://doi.org/10.1016/j.biortech.2010.06.031

    Article  Google Scholar 

  17. 17.

    Reddy HK, Muppaneni T, Patil PD, Ponnusamy S, Cooke P, Schaub T, Deng S (2013) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel 115:720–726. https://doi.org/10.1016/j.fuel.2013.07.090

    Article  Google Scholar 

  18. 18.

    Jazzar S, Olivares-Carrillo P, Pérez de los Ríos A, Marzouki MN, Acién-Fernández FG, Fernández-Sevilla JM, Molina-Grima E, Smaali I, Quesada-Medina J (2015) Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel. Appl Energy 148:210–219. https://doi.org/10.1016/j.apenergy.2015.03.069

    Article  Google Scholar 

  19. 19.

    Shirazi HM, Karimi-Sabet J, Ghotbi C (2017) Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition. Bioresour Technol 239:378–386. https://doi.org/10.1016/j.biortech.2017.04.073

    Article  Google Scholar 

  20. 20.

    Muthuraj M, Kumar V, Palabhanvi B, Das D (2014) Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. J Ind Microbiol Biotechnol 41:499–511. https://doi.org/10.1007/s10295-013-1397-9

    Article  Google Scholar 

  21. 21.

    Palabhanvi B, Muthuraj M, Mukherjee M, Kumar V, Das D (2016) Process engineering strategy for high cell density-lipid rich cultivation of Chlorella sp. FC2 IITG via model guided feeding recipe and substrate driven pH control. Algal Res 16:317–329. https://doi.org/10.1016/j.algal.2016.03.024

    Article  Google Scholar 

  22. 22.

    Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D (2014) Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae. Renew Energy 68:560–569. https://doi.org/10.1016/j.renene.2014.02.037

    Article  Google Scholar 

  23. 23.

    Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403. https://doi.org/10.1002/jctb.2338

    Article  Google Scholar 

  24. 24.

    Su YC, Liu YA, Diaz Tovar CA, Gani R (2011) Selection of prediction methods for thermophysical properties for process modelling and product design of biodiesel manufacturing. Ind Eng Chem Res 50:6809–6836. https://doi.org/10.1021/ie102441u

    Article  Google Scholar 

  25. 25.

    Ramirez-Verduzco LF, Rodriguez-Rodriguez JE, Jaramillo-Jacob AR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111. https://doi.org/10.1016/j.fuel.2011.06.070

    Article  Google Scholar 

  26. 26.

    Hasib ZM, Hossain J, Biswas S, Islam A (2011) Bio-diesel from mustard oil: a renewable alternative fuel for small diesel engines. Mod Mech Eng 1:77–83. https://doi.org/10.4236/mme.2011.12010

    Article  Google Scholar 

  27. 27.

    Reddy HK, Muppaneni T, Patil PD, Ponnusamy S, Cooke P, Schaub T, Deng S (2014) Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel 115:720–726. https://doi.org/10.1016/j.fuel.2013.07.090

    Article  Google Scholar 

  28. 28.

    Song E-S, Lim J-W, Lee H-S, Lee Y-W (2008) Transesterification of RBD palm oil using supercritical methanol. J Supercrit Fluids 44:356–363. https://doi.org/10.1016/j.supflu.2007.09.010

    Article  Google Scholar 

  29. 29.

    Gui MM, Lee KT, Bhatia S (2009) Supercritical ethanol technology for the production of biodiesel: process optimization studies. J Supercrit Fluids 49:286–292. https://doi.org/10.1016/j.supflu.2008.12.014

    Article  Google Scholar 

  30. 30.

    Tan KT, Lee KT, Mohamed AR (2010) Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. J Supercrit Fluids 53:88–91. https://doi.org/10.1016/j.supflu.2010.01.012

    Article  Google Scholar 

  31. 31.

    Komers K, Machek J, Stloukal R (2001) Biodiesel from rapeseed oil and KOH. 2. Composition of solution of KOH in methanol as reaction partner of oil. Eur J Lipid Sci Technol 103:359–362. https://doi.org/10.1002/1438-9312(200106)103:6<359::AID-EJLT359>3.0.CO;2-K

    Article  Google Scholar 

  32. 32.

    Kusdiana D, Saka S (2004) Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol 91:289–295. https://doi.org/10.1016/S0960-8524(03)00201-3

    Article  Google Scholar 

  33. 33.

    Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363. https://doi.org/10.1021/ie049157g

    Article  Google Scholar 

  34. 34.

    Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification - a review. Renew Sust Energ Rev 10:248–268. https://doi.org/10.1016/j.rser.2004.09.002

    Article  Google Scholar 

  35. 35.

    Vyas AP, Verma JL, Subrahmanyam N (2010) A review on FAME production processes. Fuel 89:1–9. https://doi.org/10.1016/j.fuel.2009.08.014

    Article  Google Scholar 

  36. 36.

    Kusdiana D, Saka S (2001) Kinetics of transesterification in rapeseed oil to biodiesel fuels as treated in supercritical methanol. Fuel 80:693–698. https://doi.org/10.1016/S0016-2361(00)00140-X

    Article  Google Scholar 

  37. 37.

    Sathish A, Smith BR, Sims RC (2014) Effect of moisture on in situ transesterification of microalgae for biodiesel production. J Chem Technol Biotechnol 89:137–142. https://doi.org/10.1002/jctb.4125

    Article  Google Scholar 

  38. 38.

    Tobar M, Núñez GA (2018) Supercritical transesterification of microalgae triglycerides for biodiesel production: effect of alcohol type and co-solvent. J Supercrit Fluids 137:50–56. https://doi.org/10.1016/j.supflu.2018.03.008

    Article  Google Scholar 

  39. 39.

    Zhou D, Qiao B, Li G, Xue S, Yin J (2017) Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. Bioresour Technol 238:609–615. https://doi.org/10.1016/j.biortech.2017.04.097

    Article  Google Scholar 

  40. 40.

    Jazzar S, Quesada-Medina J, Olivares-Carrillo P, Marzouki MN, Acién-Fernández FG, Fernández-Sevilla JM, Molina-Grima E, Smaali I (2015) A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. Bioresour Technol 190:281–288. https://doi.org/10.1016/j.biortech.2015.04.097

    Article  Google Scholar 

  41. 41.

    Lee J-S, Saka S (2010) Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour Technol 101:7191–7200. https://doi.org/10.1016/j.biortech.2010.04.071

    Article  Google Scholar 

  42. 42.

    McArthur H, Spalding D (2004) Plastics and adhesives. In: McArthur H, Spalding D (eds) Engineering materials science. Woodhead Publishing, Cambridge, pp 465–512

    Google Scholar 

  43. 43.

    Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofngiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110. https://doi.org/10.1016/j.biortech.2010.06.017

    Article  Google Scholar 

  44. 44.

    Yeh KL, Chang JS (2012) Effects of cultivation conditions and media compositions on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 105:120–127. https://doi.org/10.1016/j.biortech.2011.11.103

    Article  Google Scholar 

  45. 45.

    Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364. https://doi.org/10.1021/ef700639e

    Article  Google Scholar 

  46. 46.

    Nautiyal P, Subramanian KA, Dastidar MG (2014) Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction–transesterification process. Fuel 135:228–234. https://doi.org/10.1016/j.fuel.2014.06.063

    Article  Google Scholar 

  47. 47.

    Chauhan BS, Kumar N, Cho HM, Lim HC (2013) A study on the performance and emission of a diesel engine fuelled with Karanja biodiesel and its blends. Energy 56:1–7. https://doi.org/10.1016/j.energy.2013.03.083

    Article  Google Scholar 

  48. 48.

    Silverstein R, Webster F (1998) Spectrometric identification of organic compounds, sixth edn. Wiley, New York

    Google Scholar 

Download references

Funding

This research work was financially supported by the Science and Engineering Research Board (Grant number SERB/F/1491/2013-14), India, and is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Debasish Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal rights and informed consent

No conflicts, informed consent, human or animal rights applicable. All authors agree to authorship and submission of the manuscript for peer review.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chauhan, D.S., Goswami, G., Dineshbabu, G. et al. Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Conv. Bioref. 10, 339–349 (2020). https://doi.org/10.1007/s13399-019-00432-2

Download citation

Keywords

  • Chlorella sp. FC2 IITG
  • Optimization
  • Supercritical methanol transesterification (SCMT)
  • Fatty acid methyl ester (FAME)
  • Biodiesel