Skip to main content
Log in

Ultrasonic pretreatment for low-temperature hydrothermal liquefaction of microalgae: enhancing the bio-oil yield and heating value

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

We investigated the effect of ultrasonic pretreatment on the bio-oil yield and heating value in the low-temperature hydrothermal liquefaction (HTL) of microalgae. HTL is one of the thermochemical processes for bio-oil production. However, the high pressure of the process is one of the main challenges for commercialization. On the other hand, a decrease in the HTL pressure, and consequently a decrease in the temperature, results in a decrease in the bio-oil yield. In this work, we investigated a new method to increase the bio-oil yield at low pressures and temperatures. The microalgae (Nannochloropsis sp.) were first pretreated by ultrasonic waves for 30, 60, and 90 s at 100 W. After then, the bio-oil was produced using HTL at 210, 230, and 250 °C. According to the results, using ultrasonic-assisted HTL increased the bio-oil yield up to the maximum of 28.9% (90-s sonication time at 250 °C). Moreover, applying ultrasonic pretreatment resulted in a decrease in oxygen content of the bio-oil and consequently an increase in its heating value. However, the average nitrogen content did not change dramatically by using ultrasonic-assisted hydrothermal liquefaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Changi SM, Faeth JL, Mo N, Savage PE (2015) Hydrothermal reactions of biomolecules relevant for microalgae liquefaction. Ind Eng Chem Res 54(47):11733–11758. https://doi.org/10.1021/acs.iecr.5b02771

    Article  Google Scholar 

  2. Yu G, Zhang YH, Guo B, Funk T, Schideman L (2014) Nutrient flows and quality of bio-crude oil produced via catalytic hydrothermal liquefaction of low-lipid microalgae. Bioenerg Res 7(4):1317–1328. https://doi.org/10.1007/s12155-014-9471-3

    Article  Google Scholar 

  3. Yang WC, Li XG, Liu SS, Feng LJ (2014) Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energ Convers Manage 87:938–945. https://doi.org/10.1016/j.enconman.2014.08.004

    Article  Google Scholar 

  4. Chen Y, Wu YL, Ding RR, Zhang P, Liu J, Yang MD, Zhang P (2015) Catalytic hydrothermal liquefaction of D. tertiolecta for the production of bio-oil over different acid/base catalysts. AICHE J 61(4):1118–1128. https://doi.org/10.1002/aic.14740

    Article  Google Scholar 

  5. Jena U, Das KC, Kastner JR (2012) Comparison of the effects of Na2CO3, Ca-3(PO4)(2), and NiO catalysts on the thermochemical liquefaction of microalga Spirulina Platensis. Appl Energy 98:368–375. https://doi.org/10.1016/j.apenergy.2012.03.056

    Article  Google Scholar 

  6. Shakya R, Whelen J, Adhikari S, Mahadevan R, Neupane S (2015) Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Res 12:80–90. https://doi.org/10.1016/j.algal.2015.08.006

    Article  Google Scholar 

  7. Chen WT, Zhang YH, Zhang JX, Schideman L, Yu G, Zhang P, Minarick M (2014) Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl Energy 128:209–216. https://doi.org/10.1016/j.apenergy.2014.04.068

    Article  Google Scholar 

  8. Gai C, Li Y, Peng NN, Fan AN, Liu ZG (2015) Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Bioresour Technol 185:240–245. https://doi.org/10.1016/j.biortech.2015.03.015

    Article  Google Scholar 

  9. Jin BB, Duan PG, Xu YP, Wang F, Fan YC (2013) Co-liquefaction of micro- and macroalgae in subcritical water. Bioresour Technol 149:103–110. https://doi.org/10.1016/j.biortech.2013.09.045

    Article  Google Scholar 

  10. Pei XK, Yuan XZ, Zeng GM, Huang HJ, Wang JY, Li H, Zhu HN (2012) Co-liquefaction of microalgae and synthetic polymer mixture in sub- and supercritical ethanol. Fuel Process Technol 93(1):35–44. https://doi.org/10.1016/j.fuproc.2011.09.010

    Article  Google Scholar 

  11. Brilman DWF, Drabik N, Wądrzyk M (2017) Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Conversion and Biorefinery 7:1–10

    Article  Google Scholar 

  12. Biller P, Friedman C, Ross AB (2013) Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour Technol 136:188–195. https://doi.org/10.1016/j.biortech.2013.02.088

    Article  Google Scholar 

  13. Zhuang YB, Guo JX, Chen LM, Li DM, Liu JH, Ye NH (2012) Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis. Bioresour Technol 116:133–139. https://doi.org/10.1016/j.biortech.2012.04.036

    Article  Google Scholar 

  14. Liu JH, Zhuang YB, Li Y, Chen LM, Guo JX, Li DM, Ye NH (2013) Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology. Energy 60:69–76. https://doi.org/10.1016/j.energy.2013.07.060

    Article  Google Scholar 

  15. Zhang JX, Zhang YH (2014) Hydrothermal liquefaction of microalgae in an ethanol-water co-solvent to produce biocrude oil. Energ Fuel 28(8):5178–5183. https://doi.org/10.1021/ef501040j

    Article  Google Scholar 

  16. He YY, Liang X, Jazrawi C, Montoya A, Yuen A, Cole AJ, Neveux N, Paul NA, de Nys R, Maschmeyer T, Haynes BS (2016) Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents. Algal Res 17:185–195. https://doi.org/10.1016/j.algal.2016.05.010

    Article  Google Scholar 

  17. Jazrawi C, Biller P, He YY, Montoya A, Ross AB, Maschmeyer T, Haynes BS (2015) Two-stage hydrothermal liquefaction of a high-protein microalga. Algal Res 8:15–22. https://doi.org/10.1016/j.algal.2014.12.010

    Article  Google Scholar 

  18. Yeh TM, Dickinson JG, Franck A, Linic S, Thompson LT, Savage PE (2013) Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biot 88(1):13–24. https://doi.org/10.1002/jctb.3933

    Article  Google Scholar 

  19. Ma YA, Cheng YM, Huang JW, Jen JF, Huang YS, Yu CC (2014) Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess Biosyst Eng 37(8):1543–1549. https://doi.org/10.1007/s00449-014-1126-4

    Article  Google Scholar 

  20. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):S75–S77. https://doi.org/10.1016/j.biortech.2009.03.058

    Article  Google Scholar 

  21. Grimi N, Dubois A, Marchal L, Jubeau S, Lebovka NI, Vorobiev E (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259. https://doi.org/10.1016/j.biortech.2013.12.011

    Article  Google Scholar 

  22. Park JY, Lee K, Choi SA, Jeong MJ, Kim B, Lee JS, Oh YK (2015) Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris. Renew Energ 79:3–8. https://doi.org/10.1016/j.renene.2014.10.001

    Article  Google Scholar 

  23. Brown TM, Duan PG, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energ Fuel 24(6):3639–3646. https://doi.org/10.1021/ef100203u

    Article  Google Scholar 

  24. Mohammad Saber AG, Hosseinpour M, Takahashi F, Yoshikawa K (2016) Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Appl Energy 183:566–576. https://doi.org/10.1016/j.apenergy.2016.09.017

    Article  Google Scholar 

Download references

Acknowledgments

We would like to show our gratitude to Professor Serizawa (Department of Chemical Science and Engineering, Tokyo Institute of Technology) for providing Sonicator equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saber, M., Golzary, A., Wu, H. et al. Ultrasonic pretreatment for low-temperature hydrothermal liquefaction of microalgae: enhancing the bio-oil yield and heating value. Biomass Conv. Bioref. 8, 509–519 (2018). https://doi.org/10.1007/s13399-017-0300-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-017-0300-8

Keywords

Navigation