Biomass Conversion and Biorefinery

, Volume 8, Issue 2, pp 255–263 | Cite as

Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation

  • Budi Mandra Harahap
  • Made Tri Ari Penia Kresnowati
Original Article
  • 22 Downloads

Abstract

Moderate pretreatment methods were evaluated on oil palm empty fruit bunches (OPEFB) in order to obtain xylose-rich hydrolysate for xylitol production via enzymatic hydrolysis and fermentation. Assessments on the effects of catalysts (autohydrolysis/water, acetic acid, or ammonia) and the corresponding concentration and pretreatment time at moderate pressure/temperature were conducted while the process performance was evaluated by enzymatic hydrolysis. Most hemicellulose was still retained in the pretreated solid at the evaluated pretreatment conditions, hydrolysis of both the pretreated solid and spent liquor are necessary to obtain most of xylose from OPEFB. Pretreatment using 5% ammonia gave the highest xylose yield; however, great amount of acid would be needed for pH adjustment for the following enzymatic hydrolysis process and thereby autohydrolysis was preferred. The optimum yield was obtained from autohydrolysis at 1.5 barg/127.9 °C for 60 min, which gave xylose yield of 0.085 g xylose/g OPEFB (or 39.1% of hemicellulose). The obtained hydrolysate could be directly used as substrate for fermentation.

Keywords

Acetic acid Ammonia Autohydrolysis Moderate condition Oil palm empty fruit bunch Pretreatment Xylose 

Notes

Funding information

This research was funded by the Indonesian Oil Palm Plantation Fund Management Agency grant entitled “Engineering of Oil Palm Empty Fruit Bunches Hydrolysis for the Production of Green Xylitol.”

References

  1. 1.
    Chavalparit O, Rulkens WH, Mol APJ, Khaodhair S (2006) Options for environmental sustainability of the crude palm oil industry in Thailand through enhancement of industrial ecosystems. Environ Dev Sustain 8(2):271–287.  https://doi.org/10.1007/s10668-005-9018-z CrossRefGoogle Scholar
  2. 2.
    Karina M, Onggo H, Abdullah AHD, Syampurwadi A (2008) Effect of oil palm empty fruit bunch fiber on physical and mechanical properties of fiber glass reinforced polyester resin. J Biol Sci 8:101–106CrossRefGoogle Scholar
  3. 3.
    Ishola MM, Isroi, Taherzadeh MJ (2014) Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB). Bioresour Technol 165:9–12.  https://doi.org/10.1016/j.biortech.2014.02.053 CrossRefGoogle Scholar
  4. 4.
    Mardawati E, Wira DW, Kresnowati MTAP, Purwadi R, Setiadi T (2015) Microbial production of xylitol from oil palm empty fruit bunches hydrolysate: the effect of glucose concentration. J Jpn Inst Energy 94(8):769–774.  https://doi.org/10.3775/jie.94.769 CrossRefGoogle Scholar
  5. 5.
    Sudiyani Y, Styarini D, Triwahyuni E, Sudiyarmanto SKC, Aristiawan Y, Abimanyu H, Han MH (2013) Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot–scale unit. Energy Procedia 32:31–38.  https://doi.org/10.1016/j.egypro.2013.05.005 CrossRefGoogle Scholar
  6. 6.
    Triwahyuni E, Sudiyani Y, Abimanyu H (2015) The effect of substrate loading on simultaneous saccharification and fermentation process for bioethanol production from oil palm empty fruit bunches. Energy Procedia 68:138–146.  https://doi.org/10.1016/j.egypro.2015.03.242 CrossRefGoogle Scholar
  7. 7.
    Mardawati E, Werner A, Bley T, Kresnowati MTAP, Setiadi T (2014) The enzymatic hydrolysis of oil palm empty fruit bunches to xylose. J Jpn Inst Energy 93(10):973–978.  https://doi.org/10.3775/jie.93.973 CrossRefGoogle Scholar
  8. 8.
    Singhvi MS, Chaudhari S, Gokhale DV (2014) Lignocellulose processing: a current challenge. RSC Adv 4(16):8271–8277.  https://doi.org/10.1039/c3ra46112b CrossRefGoogle Scholar
  9. 9.
    De Albuquerque TL, da Silva IJ, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49(11):1779–1789.  https://doi.org/10.1016/j.procbio.2014.07.010 CrossRefGoogle Scholar
  10. 10.
    Mäkinen KK, Söderllng E (1980) A quantitative study of mannitol, sorbitol, xylitol, and xylose in wild berries and commercial. J Food Sci 45(2):367–371.  https://doi.org/10.1111/j.1365-2621.1980.tb02616.x CrossRefGoogle Scholar
  11. 11.
    Hounsome N, Hounsome B, Tomos D, Edwards-Jones G (2008) Plant metabolites and nutritional quality of vegetables. J Food Sci 73(4):48–65.  https://doi.org/10.1111/j.1750-3841.2008.00716.x CrossRefGoogle Scholar
  12. 12.
    Huang CF, Jiang YF, Guo GL, Hwang WS (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102(3):3322–3329.  https://doi.org/10.1016/j.biortech.2010.10.111 CrossRefGoogle Scholar
  13. 13.
    Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida Tropicalis. Bioresour Technol 97(15):1974–1978.  https://doi.org/10.1016/j.biortech.2005.08.015 CrossRefGoogle Scholar
  14. 14.
    Yewale T, Panchwagh S, Rajagopalan S, Dhamole PB, Jain R (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6(1):75.  https://doi.org/10.1007/s13205-016-0388-8 CrossRefGoogle Scholar
  15. 15.
    Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Xylitol production from d-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141.  https://doi.org/10.1016/j.biortech.2011.11.119 CrossRefGoogle Scholar
  16. 16.
    Prakash G, Varma a J, Prabhune A, Shouche Y, Rao M (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102(3):3304–3308.  https://doi.org/10.1016/j.biortech.2010.10.074 CrossRefGoogle Scholar
  17. 17.
    Sampaio FC, Mantovani HC, Passos FJV, de Moraes CA, Converti A, Passos FML (2005) Bioconversion of D-xylose to xylitol by Debaryomyces hansenii UFV-170: product formation versus growth. Process Biochem 40(11):3600–3606.  https://doi.org/10.1016/j.procbio.2005.03.039 CrossRefGoogle Scholar
  18. 18.
    Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78.  https://doi.org/10.1016/j.biombioe.2012.03.026 CrossRefGoogle Scholar
  19. 19.
    Han Q, Jin Y, Jameel H, Chang H, Phillips R, Park S (2015) Autohydrolysis pretreatment of waste wheat straw for cellulosic ethanol production in a co-located straw pulp mill. Appl Biochem Biotechnol 175(2):1193–1210.  https://doi.org/10.1007/s12010-014-1349-5 CrossRefGoogle Scholar
  20. 20.
    Qin L, Liu Z, Jin M, Li B, Yuan Y (2013) High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. Bioresour Technol 146:504–511.  https://doi.org/10.1016/j.biortech.2013.07.099 CrossRefGoogle Scholar
  21. 21.
    Sabrina J, Nousiainen T, Sixta H (2012) Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour Technol 109:77–85.  https://doi.org/10.1016/j.biortech.2012.01.018 CrossRefGoogle Scholar
  22. 22.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33.  https://doi.org/10.1016/S0960-8524(99)00161-3 CrossRefGoogle Scholar
  23. 23.
    Van Der PEC, Bakker RR, Baets P, Eggink G (2014) By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl Microbiol Biotechnol 98(23):9579–9593.  https://doi.org/10.1007/s00253-014-6158-9 CrossRefGoogle Scholar
  24. 24.
    Wang GS, Lee J-W, Zhu JY, Jeffries TW (2011) Dilute acid pretreatment of corncob for efficient sugar production. Appl Biochem Biotechnol 163(5):658–668.  https://doi.org/10.1007/s12010-010-9071-4 CrossRefGoogle Scholar
  25. 25.
    Rodrigues CIS, Jackson JJ, Montross MD (2016) A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Ind Crop Prod 92:165–173.  https://doi.org/10.1016/j.indcrop.2016.08.010 CrossRefGoogle Scholar
  26. 26.
    Yu M, Li J, Chang S, Zhang L, Mao Y, Cui T, Yan Z, Luo C, Li S (2016) Bioethanol production using the sodium hydroxide pretreated sweet sorghum bagasse without washing. Fuel 175:20–25.  https://doi.org/10.1016/j.fuel.2016.02.012 CrossRefGoogle Scholar
  27. 27.
    Jung YH, Kim IJ, Han J, Choi I-G, Kim KH (2011) Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour Technol 102(20):9806–9809.  https://doi.org/10.1016/j.biortech.2011.07.050 CrossRefGoogle Scholar
  28. 28.
    Isci A, Himmelsbach JN, Pometto AL III, Raman DR, Anex RP (2008) Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 144(1):69–77.  https://doi.org/10.1007/s12010-007-8008-z CrossRefGoogle Scholar
  29. 29.
    Liu Z, Padmanabhan S, Cheng K, Schwyter P, Pauly M, Bell AT, Prausnitz JM (2013) Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresour Technol 135:23–29.  https://doi.org/10.1016/j.biortech.2012.10.133 CrossRefGoogle Scholar
  30. 30.
    Mcintosh S, Vancov T (2011) Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35(7):3094–3103.  https://doi.org/10.1016/j.biombioe.2011.04.018 CrossRefGoogle Scholar
  31. 31.
    Van Der PEC, Bakker R, Van Zeeland A, Garcia DS, Punt A, Eggink G (2015) Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment. Bioresour Technol 181:114–123.  https://doi.org/10.1016/j.biortech.2015.01.033 CrossRefGoogle Scholar
  32. 32.
    Michelin M, Ximenes E, De Lourdes M, De Moraes T, Ladisch MR (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278.  https://doi.org/10.1016/j.biortech.2015.08.120 CrossRefGoogle Scholar
  33. 33.
    Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112.  https://doi.org/10.1016/j.biortech.2015.10.009 CrossRefGoogle Scholar
  34. 34.
    Datta R (1981) Acidogenic fermentation of lignocellulose-acid yield and conversion of components. Biotechnol Bioeng 23(9):2167–2170.  https://doi.org/10.1002/bit.260230921 MathSciNetCrossRefGoogle Scholar
  35. 35.
    Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass. Laboratory analytical procedures (TP-510-42629). National Renewable Energy Laboratory, Golden, pp 1–5Google Scholar
  36. 36.
    Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270.  https://doi.org/10.1016/0168-1656(92)90074-J CrossRefGoogle Scholar
  37. 37.
    Adney B, Baker J (2008) Measurement of cellulase activities. Laboratory analytical procedures (TP-510-42628). National Renewable Energy Laboratory, Golden, pp 1–8Google Scholar
  38. 38.
    Nobre A, Duarte LC, Roseiro JC, Gírio FM (2002) A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats. Appl Microbiol Biotechnol 59(4-5):509–516.  https://doi.org/10.1007/s00253-002-1050-4 CrossRefGoogle Scholar
  39. 39.
    Kresnowati MTAP, Ardina AB, Oetomo VP (2012) From palm oil waste to valuable products: microbial production of xylitol. Proc 19th Reg Symp Chem EngGoogle Scholar
  40. 40.
    Kim DY, Um BH, Oh KK (2015) Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts. Appl Biochem Biotechnol 176(5):1445–1458.  https://doi.org/10.1007/s12010-015-1656-5 CrossRefGoogle Scholar
  41. 41.
    Ertas M, Han Q, Jameel H (2014) Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery. Bioresour Techonol 169:1–8.  https://doi.org/10.1016/j.biortech.2014.06.081 CrossRefGoogle Scholar
  42. 42.
    Zhang H, Wu S (2014) Dilute ammonia pretreatment of sugarcane bagasse followed by enzymatic hydrolysis to sugars. Cellulose 21(3):1341–1349.  https://doi.org/10.1007/s10570-014-0233-3 CrossRefGoogle Scholar
  43. 43.
    Sabiha-hanim S, Azemi M, Noor M, Rosma A (2011) Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresour Technol 102(2):1234–1239.  https://doi.org/10.1016/j.biortech.2010.08.017 CrossRefGoogle Scholar
  44. 44.
    Carvalheiro F, Duarte LC, Medeiros R, Gírio FM (2007) Xylitol production by Debaryomyces hansenii in brewery spent grain dilute-acid hydrolysate: effect of supplementation. Biotechnol Lett 29(12):1887–1891.  https://doi.org/10.1007/s10529-007-9468-5 CrossRefGoogle Scholar
  45. 45.
    Boussarsar H, Roge B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100(24):6537–6542.  https://doi.org/10.1016/j.biortech.2009.07.019 CrossRefGoogle Scholar
  46. 46.
    Kresnowati MTAP, Setiadi T, Tantra TM, David (2016) Microbial production of xylitol from oil palm empty fruit bunches hydrolysate: effect of inoculum and pH. J Eng Technol Sci 48(5):523–533.  https://doi.org/10.5614/j.eng.technol.sci.2016.48.5.2 CrossRefGoogle Scholar
  47. 47.
    Rivas B, Domínguez JM, Domínguez H, Parajo JC (2002) Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production fro corn cob. Enzym Microb Technol 31(4):431–438.  https://doi.org/10.1016/S0141-0229(02)00098-4 CrossRefGoogle Scholar
  48. 48.
    Tada K, Horiuchi J, Kanno T, Kobayashi M (2004) Microbial xylitol production from corn cob using Candida magnoliae. J Biosci Bioeng 98(3):228–230.  https://doi.org/10.1016/S1389-1723(04)00273-7 CrossRefGoogle Scholar
  49. 49.
    Baek S, Kwon Y (2007) Optimization of the pretreatment of rice straw hemicellulosic hydrolysates for microbial production of xylitol. Biotechnol Bioprocess Eng 12(5):404–409.  https://doi.org/10.1007/s12257-016-0483-z CrossRefGoogle Scholar
  50. 50.
    Wang L, Yang M, Fan X, Zhu X, Xu T, Yuan Q (2011) An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochem 46(8):1619–1626.  https://doi.org/10.1016/j.procbio.2011.05.004 CrossRefGoogle Scholar
  51. 51.
    Li M, Meng X, Diao E, Du F (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol 87(3):387–392.  https://doi.org/10.1002/jctb.2732 CrossRefGoogle Scholar
  52. 52.
    Misra S, Raghuwanshi S, Saxena RK (2013) Evaluation of corncob hemicellulosic hydrolysate for xylitol production byadapted strain of Candida tropicalis. Carbohydr Polym 92(2):1596–1601.  https://doi.org/10.1016/j.carbpol.2012.11.033 CrossRefGoogle Scholar
  53. 53.
    Deng L, Tang Y, Liu Y (2014) Detoxification of corncob acid hydrolysate with SAA pretreatment and xylitol production by immobilized Candida tropicalis. Sci World J 2014:1–11.  https://doi.org/10.1155/2014/214632 Google Scholar
  54. 54.
    Albuquerque TL, Gomes SDL, Marques JE Jr, da Silva IJ Jr, Rocha MVP (2015) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 255:33–40.  https://doi.org/10.1016/j.cattod.2014.10.054 CrossRefGoogle Scholar
  55. 55.
    Hernandez-Perez AF, Arruda PV, Felipe MGA (2016) Sugarcane straw as feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol 47(2):489–496.  https://doi.org/10.1016/j.bjm.2016.01.019 CrossRefGoogle Scholar
  56. 56.
    Tavares JM, Duarte LC, Amaral-Collaҫo MT, Gírio FM (2000) The influence of hexoses addition on the fermentation of D-xylose in Debaryomyces hansenii under continuous cultivation. Enzym Microb Technol 26(9-10):743–747.  https://doi.org/10.1016/S0141-0229(00)00166-6 CrossRefGoogle Scholar
  57. 57.
    Parajo JC, Domínguez H, Domíngues JM (1998) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65(3):191–201.  https://doi.org/10.1016/S0960-8524(98)00038-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Budi Mandra Harahap
    • 1
  • Made Tri Ari Penia Kresnowati
    • 1
  1. 1.Microbiology and Bioprocess Technology Laboratory, Chemical Engineering DepartmentInstitut Teknologi BandungBandungIndonesia

Personalised recommendations