Biomass Conversion and Biorefinery

, Volume 8, Issue 2, pp 275–282 | Cite as

Production of diesel from biomass and wind power – Energy storage by the use of the Fischer-Tropsch process

  • S. Müller
  • P. Groß
  • R. Rauch
  • R. Zweiler
  • C. Aichernig
  • M. Fuchs
  • H. Hofbauer
Original Article
  • 177 Downloads

Abstract

An increasing share of power production from sun and wind energy in Europe led to an increasing interest in novel energy storage technologies. The production of hydrogen from electricity via electrolysis enables the conversion of electrical energy into chemical energy, which can be stored with high energy density, if further process steps are applied. The Fischer-Tropsch process is well-known for the production of diesel fuel from different fuel types. Within the present work, results of an experimental campaign with a laboratory-scale Fischer-Tropsch plant are illustrated. The described experimental campaign was executed to determine the performance of a diesel fuel production from biomass. Furthermore, the investigation included the integration of hydrogen from wind power promoting a combined power-to-gas and biomass-to-liquid process. As a result, the investigated process is aiming at the storage of wind energy by the use of a chemical process enabling high energy density. Therefore, extensive measurement data was collected illustrating the influence of load changes on the operated laboratory-scale Fischer-Tropsch plant. The experimental campaign showed that an increased gas stream feed, enabled by the addition of hydrogen from wind power, leads to an increased output of Fischer-Tropsch products. Furthermore, the executed experimental campaign proved the suitability of different catalysts with respect to fluctuating load changes.

Keywords

Fischer-Tropsch Biomass Hydrogen Wind power Energy storage Power-to-Liquid 

Abbreviations

BtL

Biomass to liquid

DVGW

German Association for Gas and Water (Deutscher Verein des Gas- and Wasserfachs)

FTsynthesis

Fischer-Tropsch synthesis

HP reactor

Heat pipe reactor

PtG

Power-to-Gas

PtL

Power-to-Liquid

RME

Rapeseed methyl ester

RWGS

Reverse water-gas-shift reaction

SNG

Synthetic natural gas

SSD

Soft shut down

UNFCCC

United Nations Framework Convention on Climate Change

α

Anderson-Schulz-Flory product distribution [−]

C5–C9

Gasoline/naphta fraction [kg/h]

C10–C19

Diesel fraction [kg/h]

C20–C60

Wax fraction [kg/h]

H2/CO ratio

Ratio between hydrogen and carbon monoxide [−]

n

Variable number for polymerization reaction [−]

n.CO.out

Carbon monoxide entering slurry reactor [mol/h]

n.CO.in

Carbon monoxide exiting slurry reactor [mol/h]

m

Chain length number [−]

Wm

Fraction share with specific chain length [−]

XCO

Carbon monoxide conversion [%]

Notes

Funding information

The authors acknowledge financial support by the Austrian government through the “Klima- und Energiefonds” financed project Winddiesel_klienIF within the “e!Mission.at” funding scheme. The project Winddiesel_klienIF is executed in cooperation with Energie Burgenland AG, Bilfinger SE, Güssing Energy Technologies GmbH, REPOTEC GmbH & Co KG, Energy & Chemical Engineering GmbH, and the Institute of Chemical Engineering from TU WIEN.

References

  1. 1.
    http://unfccc.int (read on October 17th 2016)
  2. 2.
  3. 3.
    Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems: limiting global warming by transforming energy systems. Kassel Univ, PressGoogle Scholar
  4. 4.
    Aicher T, Gonzalez MI, Schaub G, Götz M (2014) Betrachtungen des Gesamtsystems im Hinblick auf Dynamik und Prozessintegration. in: Energiewasserpraxis 65, 51–55Google Scholar
  5. 5.
    Mayer J, Jakuttis M, Binder S, Hornung A (2014) Energetische und wirtschaftliche Betrachtung einer dezentralen Methanolsynthese in: Proceedings 13.Symposium Energieinnovation GrazGoogle Scholar
  6. 6.
    Götz M, Lefebvre J, Mörs F, McDaniel KA, Graf F, Bajohr S, Kolb T (2015) Renewable Power-to-Gas: a technological and economic review. Renew Energy 85:1371–1390.  https://doi.org/10.1016/j.renene.2015.07.066 CrossRefGoogle Scholar
  7. 7.
    Graf F, Krajete A, Schmack U (2014) Techno-ökonomische Studie zur biologischen Methanisierung bei Power-to-Gas-Konzepten. DVGW ForschungsberichtGoogle Scholar
  8. 8.
    Götz M, Graf F, Koch A, Lefebvre J, Bajohr S, Kolb T (2015) Coupling of biomass based processes with PtG, methanation technologies, process concepts, and economics in: Proceedings World Gas Conference, ParisGoogle Scholar
  9. 9.
    Graf F, Henel M, Tichler R, Schaaf T (2014) Technoökonomische Studie von Power-to-Gas-Konzepten. DVGW ForschungsberichtGoogle Scholar
  10. 10.
    Kaim-Albers N, Holtrup F, Tornic S (2015) Energie für Deutschland 2015 - Fakten, Perspektiven und Positionen im globalen Kontext. World Energy Council - Weltenergierat BerlinGoogle Scholar
  11. 11.
    Sauciuc A, Abosteif Z, Weber G, Potetz A, Rauch R, Hofbauer H, Schaub G, Dumitrescu L (2011) Influence of pressure on the performance of biomass based Fischer-Tropsch synthesis, in: Hofbauer H. (Ed.): Proceedings of the International Conference on Polygeneration Strategies (ICPS11), ViennaGoogle Scholar
  12. 12.
    Rauch R, Kiennemann A, Sauciuc A (2013) Fischer-Tropsch synthesis to biofuels (BtL Process), in: the role of catalysis for the sustainable production of bio-fuels and bio-chemicals, Triantafyllidis K. (Ed.), AmsterdamGoogle Scholar
  13. 13.
    Maier L (2014) Production of synthetic iso-paraffinic kerosene from wood, Master thesis, FH Burgenland, PinkafeldGoogle Scholar
  14. 14.
    Fürnsinn S (2007) Outwitting the dilemma of scale: cost and energy efficient scale-down of the Fischer-Tropsch fuel production from biomass, PhD thesis, TU WienGoogle Scholar
  15. 15.
    Müller S (2013) Hydrogen from biomass for industry—industrial application of hydrogen production based on dual fluid gasification, PhD thesis, TU WienGoogle Scholar
  16. 16.
    Faajii PC, Hamelinck CN, Van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129–152.  https://doi.org/10.1016/S0961-9534(02)00037-5 CrossRefGoogle Scholar
  17. 17.
    Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Studies on product distributions of iron and cobalt catalyzed Fischer-Tropsch synthesis. Appl Catal A: Gen 186:109–119.  https://doi.org/10.1016/S0926-860X(99)00167-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Energy & Chemical Engineering GmbHViennaAustria
  2. 2.Institute for Chemical, Environmental and Biological Engineering - Future Energy TechnologyTU WIENViennaAustria
  3. 3.Güssing Energy Technologies GmbHGüssingAustria
  4. 4.REPOTEC GmbH & Co KGViennaAustria

Personalised recommendations