Biomass Conversion and Biorefinery

, Volume 8, Issue 2, pp 345–355 | Cite as

Methyl β-cyclodextrin as a booster for the extraction for Olea europaea leaf polyphenols with a bio-based deep eutectic solvent

  • Vassilis Athanasiadis
  • Spyros Grigorakis
  • Stavros Lalas
  • Dimitris P. Makris
Original Article


A novel deep eutectic solvent (DES) with optimised composition was used to evaluate the effect of methyl β-cyclodextrin (CD) on the efficiency of polyphenol extraction from Olea europaea leaves (OLLs). The process developed was based on a 23 full-factorial design and response surface methodology to assess the simultaneous effect of CD concentration (C CD), liquid-to-solid ratio (R L/S ) and temperature (T). Under optimised conditions (C CD = 9%, R L/S = 40 mL g−1, T = 51 °C), the yield in total polyphenols (Y TP) was 116.65 ± 3.60 mg gallic acid equivalents per g dry weight. This value was significantly higher than that determined for the extraction performed with 60% aqueous ethanol. The extraction kinetics also showed that the extraction rate was slowed down in the presence of CD, yet the higher extraction capacity of the DES/CD medium was confirmed. Characterisation of the extracts obtained with DES/CD and DES by means of liquid chromatography-mass spectrometry demonstrated that there was no selective extraction of any particular polyphenol, suggesting that CD acted merely as an extraction booster.


Antioxidants Deep eutectic solvents Methyl β-cyclodextrin Olea europaea Polyphenols 



Antiradical activity (μmol DPPH g−1)


Diffusivity (m2 s−1)


Initial extraction rate (mg g−1 min−1)


Second-order extraction rate constant (g mg−1 min−1)


Reducing power (μmol AAE g−1)


Liquid-to-solid ratio (mL g−1)


Time (min)


Temperature (°C)


Yield in total flavonoids (mg RtE g−1)


Yield in total polyphenols (mg GAE g−1)


Yield in total polyphenols at saturation (mg GAE g−1)



Ascorbic acid equivalents


Methyl β-cyclodextrin


Deep eutectic solvents


2,2-Diphenyl-1-picrylhydrazyl radical


Gallic acid equivalents


Olea europaea leaves


Rutin equivalents




  1. 1.
    Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246CrossRefGoogle Scholar
  2. 2.
    Mojzer BE, Knez HM, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901CrossRefGoogle Scholar
  3. 3.
    Roselló-Soto E, Koubaa M, Moubarik A, Lopes RP, Saraiva JA, Boussetta N, Grimi N, Barba FJ (2015) Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: nonconventional methods for the recovery of high-added value compounds. Trends Food Sci Technol 45:296–310CrossRefGoogle Scholar
  4. 4.
    Obied HK, Prenzler PD, Omar SH, Ismael R, Servili M, Esposto S, Taticchi A, Selvaggini R, Urbani S (2012) Pharmacology of olive biophenols. Adv Mol Toxicol 6:195–242CrossRefGoogle Scholar
  5. 5.
    Şahin S, Samli R, Tan ASB, Barba FJ, Chemat F, Cravotto G, Lorenzo JM (2017) Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: antioxidant and antimicrobial properties. Molecules 22:1056CrossRefGoogle Scholar
  6. 6.
    Putnik P, Kovăcević DB, Jambrak AR, Barba FJ, Cravotto G, Binello A, Lorenzo JM, Shpigelman A (2017) Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—a review. Molecules 22:680CrossRefGoogle Scholar
  7. 7.
    Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ (2016) Deep eutectic solvents: the organic reaction medium of the century. Eur J Org Chem 2016(4):612–632CrossRefGoogle Scholar
  8. 8.
    Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135CrossRefGoogle Scholar
  9. 9.
    Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3(4):793–829CrossRefGoogle Scholar
  10. 10.
    Kyriakidou K, Mourtzinos I, Biliaderis CG, Makris DP (2016) Optimization of a green extraction/inclusion complex formation process to recover antioxidant polyphenols from oak acorn husks (Quercus robur) using aqueous 2-hydroxypropyl-β-cyclodextrin/glycerol mixtures. Environments 3(1):3CrossRefGoogle Scholar
  11. 11.
    Mourtzinos I, Anastasopoulou E, Petrou A, Grigorakis S, Makris D, Biliaderis CG (2016) Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J Food Sci Technol 53(11):3939–3947CrossRefGoogle Scholar
  12. 12.
    Parmar I, Sharma S, Rupasinghe HV (2015) Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology. J Food Sci Technol 52(4):2202–2210CrossRefGoogle Scholar
  13. 13.
    Athanasiadis V, Grigorakis S, Lalas S, Makris DP (2017) Highly efficient extraction of antioxidant polyphenols from Olea europaea leaves using an eco-friendly glycerol/glycine deep eutectic solvent. Waste Biomass Valoriz.
  14. 14.
    Mylonaki S, Kiassos E, Makris DP, Kefalas P (2008) Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology. Anal Bioanal Chem 392(5):977CrossRefGoogle Scholar
  15. 15.
    Karvela E, Makris DP, Kalogeropoulos N, Karathanos VT, Kefalas P (2009) Factorial design optimisation of grape (Vitis vinifera) seed polyphenol extraction. Eur Food Res Technol 229(5):731–742CrossRefGoogle Scholar
  16. 16.
    Apostolakis A, Grigorakis S, Makris DP (2014) Optimisation and comparative kinetics study of polyphenol extraction from olive leaves (Olea europaea) using heated water/glycerol mixtures. Separ Purif Technol 128:89–95CrossRefGoogle Scholar
  17. 17.
    Shehata E, Grigorakis S, Loupassaki S, Makris DP (2015) Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Separ Purif Technol 149:462–469CrossRefGoogle Scholar
  18. 18.
    Paleologou I, Vasiliou A, Grigorakis S, Makris DP (2016) Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Conv Bioref 6(3):289–299CrossRefGoogle Scholar
  19. 19.
    Manousaki A, Jancheva M, Grigorakis S, Makris DP (2016) Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: a comparison with conventional eco-friendly solvents. Recycling 1(1):194–204CrossRefGoogle Scholar
  20. 20.
    Jancheva M, Grigorakis S, Loupassaki S, Makris DP (2017) Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). J Appl Res Med Aromat Plants.
  21. 21.
    Dai Y, Verpoorte R, Choi YH (2014) Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem 159:116–121CrossRefGoogle Scholar
  22. 22.
    Trasanidou D, Apostolakis A, Makris DP (2016) Development of a green process for the preparation of antioxidant and pigment-enriched extracts from winery solid wastes using response surface methodology and kinetics. Chem Eng Commun 203(10):1317–1325CrossRefGoogle Scholar
  23. 23.
    Vetal MD, Lade VG, Rathod VK (2013) Extraction of ursolic acid from Ocimum sanctum by ultrasound: process intensification and kinetic studies. Chem Eng Process 69:24–30CrossRefGoogle Scholar
  24. 24.
    Karageorgou I, Grigorakis S, Lalas S, Makris DP (2017) Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur Food Res Technol.
  25. 25.
    Patsea M, Stefou I, Grigorakis S, Makris DP (2017) Screening of natural sodium acetate-based low-transition temperature mixtures (LTTMs) for enhanced extraction of antioxidants and pigments from red vinification solid wastes. Environ Proc 4(1):123–135CrossRefGoogle Scholar
  26. 26.
    Qi X-L, Peng X, Huang Y-Y et al (2015) Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Ind Crop Prod 70:142–148CrossRefGoogle Scholar
  27. 27.
    Karakashov B, Grigorakis S, Loupassaki S, Makris DP (2015) Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J Appl Res Med Aromat Plants 2(1):1–8Google Scholar
  28. 28.
    Ratnasooriya CC, Rupasinghe HV (2012) Extraction of phenolic compounds from grapes and their pomace using β-cyclodextrin. Food Chem 134(2):625–631CrossRefGoogle Scholar
  29. 29.
    Rajha HN, Chacar S, Afif C, Vorobiev E, Louka N, Maroun RG (2015) β-Cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars. J Agric Food Chem 63(13):3387–3393CrossRefGoogle Scholar
  30. 30.
    Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046CrossRefGoogle Scholar
  31. 31.
    Çelik SE, Özyürek M, Güçlü K, Apak R (2015) Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation. J Incl Phenom Macrocycl Chem 83(3–4):309–319CrossRefGoogle Scholar
  32. 32.
    Philippi K, Tsamandouras N, Grigorakis S, Makris DP (2016) Ultrasound-assisted green extraction of eggplant peel (Solanum melongena) polyphenols using aqueous mixtures of glycerol and ethanol: optimisation and kinetics. Environ Process 3:369–386CrossRefGoogle Scholar
  33. 33.
    Mantegna S, Binello A, Boffa L, Giorgis M, Cena C, Cravotto G (2012) A one-pot ultrasound-assisted water extraction/cyclodextrin encapsulation of resveratrol from Polygonum cuspidatum. Food Chem 130(3):746–750CrossRefGoogle Scholar
  34. 34.
    Shao P, Zhang J, Fang Z, Sun P (2014) Complexing of chlorogenic acid with β-cyclodextrins: inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocoll 41:132–139CrossRefGoogle Scholar
  35. 35.
    Medronho B, Valente AJ, Costa P, Romano A (2014) Inclusion complexes of rosmarinic acid and cyclodextrins: stoichiometry, association constants, and antioxidant potential. Colloid Polym Sci 292(4):885–894CrossRefGoogle Scholar
  36. 36.
    Alvarez-Parrilla E, Rosa LADL, Torres-Rivas F, Rodrigo-Garcia J, González-Aguilar GA (2005) Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-cyclodextrin (β-CD). J Incl Phenom Macrocycl Chem 53(1):121–129CrossRefGoogle Scholar
  37. 37.
    Budryn G, Nebesny E, Pałecz B, Rachwał-Rosiak D, Hodurek P, Miśkiewicz K, Oracz J, Żyżelewicz D (2014) Inclusion complexes of β-cyclodextrin with chlorogenic acids (CHAs) from crude and purified aqueous extracts of green Robusta coffee beans (Coffea canephora L.) Food Res Int 61:202–213CrossRefGoogle Scholar
  38. 38.
    Hădărugă NG, Hădărugă DI, Isengard H-D (2012) Water content of natural cyclodextrins and their essential oil complexes: a comparative study between Karl Fischer titration and thermal methods. Food Chem 132(4):1741–1748CrossRefGoogle Scholar
  39. 39.
    Mourtzinos I, Salta F, Yannakopoulou K, Chiou A, Karathanos VT (2007) Encapsulation of olive leaf extract in β-cyclodextrin. J Agric Food Chem 55(20):8088–8094CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vassilis Athanasiadis
    • 1
    • 2
  • Spyros Grigorakis
    • 3
  • Stavros Lalas
    • 2
  • Dimitris P. Makris
    • 1
  1. 1.School of EnvironmentUniversity of the AegeanMyrinaGreece
  2. 2.Department of Food TechnologyTechnological Educational Institute (T.E.I.) of ThessalyKarditsaGreece
  3. 3.Food Quality and Chemistry of Natural Products ProgrammeMediterranean Agronomic Institute of Chania (M. A. I. Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM)ChaniaGreece

Personalised recommendations