Advertisement

Biomass Conversion and Biorefinery

, Volume 8, Issue 2, pp 317–328 | Cite as

Investigation of the textural and adsorption properties of activated carbon from HTC and pyrolysis carbonizates

  • Catalina Rodríguez Correa
  • Chatri Ngamying
  • Dietmar Klank
  • Andrea Kruse
Original Article
  • 325 Downloads

Abstract

Bamboo was converted into a microporous activated carbon (AC) following either a one- or a two-step activation process with KOH. The main objective was to analyze the influence of the carbonization process (pyrolysis and hydrothermal carbonization (HTC)) and mixing method of KOH (dry mixing or impregnation) on the AC textural properties as well as on the adsorption capacity of water-soluble pollutants and hydrogen (H2) storage. The highest AC yields were obtained after a two-step activation process. These ACs presented the largest surface areas (2000–2500 m2 g−1) and the best adsorption capacities not only in aqueous media but also of H2. The type of carbonization process did not have a significant effect on yield and adsorption capacities, but it did affect the surface area and pore size distribution. HTC led to ACs with a larger total pore volume than ACs from pyrolysis, but the microporous surface area was smaller. KOH impregnation led to slightly but significantly higher yields than mixing KOH dry; yet, the textural and adsorption properties were not significantly improved. KOH impregnation led to slightly but significantly higher yields than mixing KOH dry; yet, the surface area and pore size distribution as well as adsorption properties were not significantly improved. H2 adsorption capacity was highest for ACs from impregnated hydrochar, followed closely by ACs from pyrochars.

Graphical abstract

Keywords

Bamboo Activated carbon Hydrothermal carbonization Pyrolysis Porosity 

Notes

Acknowledgements

The authors would like to thank Dennis Jung and Prof. Hans Piepho for their collaboration with the statistical analysis. Additionally, special thanks to Dr. Thomas Otto and Doreen Neumann-Walter from the Institute of Catalysis Research and Development (IKFT) for measuring some of the N2 isotherms.

Supplementary material

13399_2017_280_MOESM1_ESM.pdf (86 kb)
ESM 1 (PDF 85 kb)

References

  1. 1.
    World Health Organization, UNICEF (2015) Progress on sanitation and drinking water: 2015 update and MDG assessment. Geneva. https://www.unicef.org/publications/index_82419.html. Accessed 27 July 2017
  2. 2.
    Boehler M, Zwickenpflug B, Hollender J et al (2012) Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon. Water Sci Technol 66:2115–2121CrossRefGoogle Scholar
  3. 3.
    Rodriguez-Mozaz S, López De Alda MJ, Barceló D (2004) Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. J Chromatogr A 1045:85–92. doi: 10.1016/j.chroma.2004.06.040
  4. 4.
    Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58. doi: 10.1023/A:1009673830619 CrossRefGoogle Scholar
  5. 5.
    Alabadi A, Razzaque S, Yang Y et al (2015) Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chem Eng J 281:606–612. doi: 10.1016/j.cej.2015.06.032 CrossRefGoogle Scholar
  6. 6.
    Wei H, Deng S, Hu B et al (2012) Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem 5:2354–2360. doi: 10.1002/cssc.201200570 CrossRefGoogle Scholar
  7. 7.
    Lo SF, Wang SY, Tsai MJ, Lin LD (2012) Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons. Chem Eng Res Des 90:1397–1406. doi: 10.1016/j.cherd.2011.11.020 CrossRefGoogle Scholar
  8. 8.
    Wang SY, Tsai MH, Lo SF, Tsai MJ (2008) Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Bioresour Technol 99:7027–7033. doi: 10.1016/j.biortech.2008.01.014 CrossRefGoogle Scholar
  9. 9.
    Choy KKH, Barford JP, McKay G (2005) Production of activated carbon from bamboo scaffolding waste—process design, evaluation and sensitivity analysis. Chem Eng J 109:147–165. doi: 10.1016/j.cej.2005.02.030 CrossRefGoogle Scholar
  10. 10.
    Lakkad SC, Patel JM (1981) Mechanical properties of bamboo, a natural composite. Fibre Sci Technol 14:319–322. doi: 10.1016/0015-0568(81)90023-3 CrossRefGoogle Scholar
  11. 11.
    Chung KF, Yu WK (2002) Mechanical properties of structural bamboo for bamboo scaffoldings. Eng Struct 24:429–442. doi: 10.1016/S0141-0296(01)00110-9 CrossRefGoogle Scholar
  12. 12.
    Bonilla SH, Guarnetti RL, Almeida CMVB, Giannetti BF (2010) Sustainability assessment of a giant bamboo plantation in Brazil: exploring the influence of labour, time and space. J Clean Prod 18:83–91. doi: 10.1016/j.jclepro.2009.07.012 CrossRefGoogle Scholar
  13. 13.
    Singh AN, Singh JS (1999) Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For Ecol Manag 119:195–207. doi: 10.1016/S0378-1127(98)00523-4 CrossRefGoogle Scholar
  14. 14.
    Kleinhenz V, Midmore DJ (2001) Aspects of bamboo agronomy. Adv Agron 74:99–145. doi: 10.1016/S0065-2113(01)74032-1 CrossRefGoogle Scholar
  15. 15.
    Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19:229–244. doi: 10.1016/S0961-9534(00)00038-6 CrossRefGoogle Scholar
  16. 16.
    Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr Polym 79:914–920. doi: 10.1016/j.carbpol.2009.10.017 CrossRefGoogle Scholar
  17. 17.
    Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79. doi: 10.1016/j.pecs.2015.10.002 CrossRefGoogle Scholar
  18. 18.
    Di Blasi C (1996) Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind Eng Chem Res 35:37–46. doi: 10.1021/ie950243d CrossRefGoogle Scholar
  19. 19.
    Rodriguez Correa C, Otto T, Kruse A (2017) Influence of the biomass components on the pore formation of activated carbon. Biomass Bioenergy 97:53–64. doi: 10.1016/j.biombioe.2016.12.017 CrossRefGoogle Scholar
  20. 20.
    George A, Morgan TJ, Kandiyoti R (2014) Pyrolytic reactions of lignin within naturally occurring plant matrices: challenges in biomass pyrolysis modeling due to synergistic effects. Energy Fuel 28:6918–6927. doi: 10.1021/ef501459c CrossRefGoogle Scholar
  21. 21.
    Forchheim D, Hornung U, Kruse A, Sutter T (2014) Kinetic modelling of hydrothermal lignin depolymerisation. Waste Biomass Valoriz 5:985–994. doi: 10.1007/s12649-014-9307-6 CrossRefGoogle Scholar
  22. 22.
    Dinjus E, Kruse A, Tröger N (2011) Hydrothermal carbonization—1. Influence of lignin in lignocelluloses. Chem Eng Technol 34:2037–2043. doi: 10.1002/ceat.201100487 CrossRefGoogle Scholar
  23. 23.
    Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon N Y 34:471–479. doi: 10.1016/0008-6223(95)00204-9 CrossRefGoogle Scholar
  24. 24.
    Ahmadpour A, Do DD (1997) The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon N Y 35:1723–1732. doi: 10.1016/S0008-6223(97)00127-9 CrossRefGoogle Scholar
  25. 25.
    Lillo-Ródenas M, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite: II. Activation by NaOH. Carbon N Y 39:751–759. doi: 10.1016/S0008-6223(00)00186-X CrossRefGoogle Scholar
  26. 26.
    Lozano-Castelló D, Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite—I. Activation by KOH. Carbon N Y 39:741–749. doi: 10.1016/S0008-6223(00)00185-8 CrossRefGoogle Scholar
  27. 27.
    Deutsches Institut für Normung e.V (2014) DIN 51732:2007-08 - Prüfung fester Brennstoffe - Bestimmung des Gesamtgehaltes an Kohlenstoff, Wasserstoff und Stickstoff - Instrumentelle MethodenGoogle Scholar
  28. 28.
    Deutsches Institut für Normung e.V (2010) DIN EN 14775:2010-04 Feste Biobrennstoffe – Bestimmung des AschegehaltesGoogle Scholar
  29. 29.
    Deutsches Institut für Normung e.V (1997) DIN 51719:1997-07 - Pürfung fester Brennstoffe - Bestimmung des AschegehaltesGoogle Scholar
  30. 30.
    Deutsches Institut für Normung e.V (2005) DIN EN 12904:2005-06 - Produkte zur Aufbereitung von Wasser für den menschlichen Gebrauch – Quarzsand und QuarzkiesGoogle Scholar
  31. 31.
    ASTM International (2012) ASTM D7582 - Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. doi: 10.1520/D7582
  32. 32.
    Deutsches Institut für Normung e.V (2001) DIN 51720:2001-03 - Prüfung fester Brennstoffe - Bestimmung des Gehaltes an Flüchtigen BestandteilenGoogle Scholar
  33. 33.
    Deutsches Institut für Normung e.V (2008) DIN 51734:2008-12 - Prüfung fester Brennstoffe - Immediatanalyse und Berechnung des Fixen KohlenstoffsGoogle Scholar
  34. 34.
    Deutsches Institut für Normung e.V (2010) DIN ISO 9277:2014-01 - Determination of the specific surface area of solids by gas adsorption - BET methodGoogle Scholar
  35. 35.
    Rouquerol J, Rouquerol F, Llewellyn P, et al (2013) Adsorption by powders and porous solids: principles, methodology and applications. Acad Press, LondonGoogle Scholar
  36. 36.
    Rodriguez Correa C, Bernardo M, Ribeiro RPPL et al (2017) Evaluation of hydrothermal carbonization as a preliminary step for the production of functional materials from biogas digestate. J Anal Appl Pyrolysis 124:461–474. doi: 10.1016/j.jaap.2017.02.014 CrossRefGoogle Scholar
  37. 37.
    Dieguez-Alonso A, Anca-Couce A, Zobel N, Behrendt F (2015) Understanding the primary and secondary slow pyrolysis mechanisms of holocellulose, lignin and wood with laser-induced fluorescence. Fuel 153:102–109. doi: 10.1016/j.fuel.2015.02.097 CrossRefGoogle Scholar
  38. 38.
    Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem A Eur J 15:4195–4203. doi: 10.1002/chem.200802097 CrossRefGoogle Scholar
  39. 39.
    Funke A, Reebs F, Kruse A (2013) Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol 115:261–269. doi: 10.1016/j.fuproc.2013.04.020 CrossRefGoogle Scholar
  40. 40.
    Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94. doi: 10.1016/j.biombioe.2012.12.004 CrossRefGoogle Scholar
  41. 41.
    Chandra TC, Mirna MM, Sunarso J et al (2009) Activated carbon from durian shell: preparation and characterization. J Taiwan Inst Chem Eng 40:457–462. doi: 10.1016/j.jtice.2008.10.002 CrossRefGoogle Scholar
  42. 42.
    Muniandy L, Adam F, Mohamed AR, Ng E-P (2014) The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater 197:316–323. doi: 10.1016/j.micromeso.2014.06.020 CrossRefGoogle Scholar
  43. 43.
    Nowakowski D, Jones J, Brydson R, Ross A (2007) Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86:2389–2402. doi:  10.1016/j.fuel.2007.01.026 CrossRefGoogle Scholar
  44. 44.
    Ross RA, Fong P (1981) The conversion of cellulose to fuel gases promoted by selected solid additives. Conserv Recycl 4:15–28. doi: 10.1016/0361-3658(81)90004-7 CrossRefGoogle Scholar
  45. 45.
    Nowakowski DJ, Woodbridge CR, Jones JM (2008) Phosphorus catalysis in the pyrolysis behaviour of biomass. J Anal Appl Pyrolysis 83:197–204. doi: 10.1016/j.jaap.2008.08.003 CrossRefGoogle Scholar
  46. 46.
    Di Blasi C, Branca C, D’Errico G (2000) Degradation characteristics of straw and washed straw. Thermochim Acta 364:133–142. doi: 10.1016/S0040-6031(00)00634-1 CrossRefGoogle Scholar
  47. 47.
    McKee DW (1983) Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 62:170–175. doi: 10.1016/0016-2361(83)90192-8 CrossRefGoogle Scholar
  48. 48.
    Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Act Carbon. doi: 10.1016/B978-008044463-5/50019-4
  49. 49.
    Sevilla M, Fuertes AB, Mokaya R (2011) High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ Sci 4:1400. doi: 10.1039/c0ee00347f CrossRefGoogle Scholar
  50. 50.
    Sun Y, Gao B, Yao Y et al (2014) Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578. doi: 10.1016/j.cej.2013.10.081 CrossRefGoogle Scholar
  51. 51.
    Kim KH, Kim JY, Cho TS, Choi JW (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol 118:158–162. doi: 10.1016/j.biortech.2012.04.094 CrossRefGoogle Scholar
  52. 52.
    Illán-Gómez MJ, García-García A, Salinas-Martínez de Lecea C, Linares-Solano A (1996) Activated carbons from Spanish coals. 2. Chemical activation. Energy Fuel 10:1108–1114. doi: 10.1021/ef950195+ CrossRefGoogle Scholar
  53. 53.
    Hirunpraditkoon S, Tunthong N, Ruangchai A, Nuithitikul K (2011) Adsorption capacities of activated carbons prepared from bamboo by KOH activation. Int J Chem Mol Nucl Mater Metall Eng 5:477–481Google Scholar
  54. 54.
    Basta AH, Fierro V, El-Saied H, Celzard A (2009) 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Bioresour Technol 100:3941–3947. doi: 10.1016/j.biortech.2009.02.028 CrossRefGoogle Scholar
  55. 55.
    Lillo-Ródenas MA, Marco-Lozar JP, Cazorla-Amorós D, Linares-Solano A (2007) Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. J Anal Appl Pyrolysis 80:166–174. doi: 10.1016/j.jaap.2007.01.014 CrossRefGoogle Scholar
  56. 56.
    Hill A, Marsh H (1968) A study of the adsorption of iodine and acetic acid from aqueous solutions on characterized porous carbons. Carbon N Y 6:31–39. doi: 10.1016/0008-6223(68)90048-1 CrossRefGoogle Scholar
  57. 57.
    Graham D (1955) Characterization of physical adsorption systems. III The separate effects of pore size and surface acidity upon the adsorbent capacities of activated carbons. J Phys Chem 59:896–900. doi: 10.1021/j150531a022 CrossRefGoogle Scholar
  58. 58.
    Singh B, Madhusudhanan S, Dubey V et al (1996) Active carbon for removal of toxic chemicals from contaminated water. Carbon N Y 34:327–330. doi: 10.1016/0008-6223(95)00179-4 CrossRefGoogle Scholar
  59. 59.
    Wu F-C, Tseng R-L, Juang R-S (1999) Preparation of activated carbons from bamboo and their adsorption abilities for dyes and phenol. J Environ Sci Heal Part A 34:1753–1775. doi: 10.1080/10934529909376927 CrossRefGoogle Scholar
  60. 60.
    Kim BC, Kim YH, Yamamoto T (2008) Adsorption characteristics of bamboo activated carbon. Korean J Chem Eng 25:1140–1144. doi: 10.1007/s11814-008-0187-y CrossRefGoogle Scholar
  61. 61.
    Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: materials, methods and perspectives. Renew Sust Energ Rev 50:457–469. doi: 10.1016/j.rser.2015.05.011 CrossRefGoogle Scholar
  62. 62.
    Georgakis M, Stavropoulos G, Sakellaropoulos GP (2007) Molecular dynamics study of hydrogen adsorption in carbonaceous microporous materials and the effect of oxygen functional groups. Int J Hydrog Energy 32:1999–2004. doi: 10.1016/j.ijhydene.2006.08.040 CrossRefGoogle Scholar
  63. 63.
    Thomas KM (2009) Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 0:1487. doi:  10.1039/b815583f
  64. 64.
    Lozano-Castelló D, Suárez-García F, Linares-Solano Á, Cazorla-Amorós D (2013) Chapter 12 - Advances in hydrogen storage in carbon materials. In: Renew. Hydrog. Technol. Elsevier, Amsterdam, pp 269–291Google Scholar
  65. 65.
    Broom DP (2011) Hydrogen storage materials. Springer, LondonGoogle Scholar
  66. 66.
    Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Quinn DF (2002) Activated carbon monoliths for methane storage: influence of binder. Carbon N Y 40:2817–2825. doi: 10.1016/S0008-6223(02)00194-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Conversion Technology and LCA of Renewable ResourcesUniversity of Hohenheim, Institute of Agricultural EngineeringStuttgartGermany
  2. 2.Faculty of AgricultureChiang Mai UniversityChiang MaiThailand
  3. 3.Quantachrome GmbH & Co. KGOdelzhausenGermany

Personalised recommendations