Energy minimizing associate fractal functions

  • M. A. Navascués
  • P. Viswanathan
Original Paper


The object of this paper is twofold. First, a basic question on fractal function from the perspective of numerical analysis, namely, how to evaluate a Fractal Interpolation Function (FIF) at a prescribed point is addressed by an appeal to a series expansion for FIF. Second is related to the notion of \(\alpha \)-fractal function, which we call associate fractal function, in the field of fractal approximation. We provide strategies for effective choices of scaling parameters in the associated fractal function. To this end, we minimize some functionals, such as square integral, which represents the total energy or power of a continuous-time signal and Holladay functional, which approximates the total bending energy.


Fractal interpolation function Associate fractal function Convex optimization Energy minimizing integral Holladay functional 

Mathematics Subject Classification

97N50 58C05 28A80 46N10 26A18 


  1. 1.
    Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barnsley, M.F.: Fractals everywhere. Academic Press, Orlando, FL (1988)zbMATHGoogle Scholar
  3. 3.
    Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57, 14–34 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barnsley, M.F., Massopust, P.R.: Bilinear fractal interpolation and box dimension. J. Approx. Theory 192, 362–378 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barnsley, M.F., Hegland, M., Massopust, P.R.: Numerics and fractals. Bull. Inst. Math. Acad. Sin. (N.S.) 9(3), 389–430 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, S.R.: The non-differentiability of a class of fractal interpolation functions. Acta Math. Sci. 19(4), 425–430 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dalla, L., Drakopoulos, V.: On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 101, 289–302 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Holladay, J.C.: A smoothest curve approximation. Math. Tables Aids Comput. 11, 233–243 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Manousopoulos, P., Drakopoulos, V., Theoharis, T.: Parameter identification of 1D fractal interpolation functions using bounding volumes. J. Comput. Appl. Math. 233, 1063–1082 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Massopust, P.R.: Fractal functions and their applications. Chaos Solitons Fractals 8(2), 171–190 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Massopust, P.R.: Interpolation and approximation with splines and fractals. Oxford University Press, New York (2010)zbMATHGoogle Scholar
  12. 12.
    Massopust, P.R.: Fractal functions, fractal surfaces, and wavelets, 2nd edn. Academic Press, Cambridge (2016)zbMATHGoogle Scholar
  13. 13.
    Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Navascués, M.A.: Non-smooth polynomials. Int. J. Math. Anal. 1(4), 159–174 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Navascués, M.A.: Fractal interpolants on the unit circle. Appl. Math. Lett. 21, 366–371 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Navascués, M.A.: Fractal haar system. Nonlinear Anal. TMA 74, 4152–4165 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Navascués, M.A.: Fractal bases of \(L_p\)-spaces. Fractals 20, 141–148 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Navascués, M.A., Sebastián, M.V.: Construction of affine fractal functions close to classical interpolants. J. Comput. Anal. Appl. 9(3), 271–285 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Serpa, C., Buescu, J.: Explicitly defined fractal interpolation functions with variable Parameters. Chaos Solitons Fractals 75, 76–83 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Singer, P., Zajdler, P.: Self-affine fractal functions and wavelet series. J. Math. Anal. Appl. 240, 518–551 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sokolnikoff, I.S.: Mathematical theory of elasticity. McGraw-Hill, New York (1956)zbMATHGoogle Scholar
  23. 23.
    Viswanathan, P., Chand, A.K.B.: A \({\cal{C}}^1\)-rational cubic fractal interpolation function: convergence and associated parameter identification problem. Acta Appl. Math. 136, 19–41 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Viswanathan, P., Chand, A.K.B.: A rational iterated function system for resolution of univariate constrained interpolation. RACSAM 109(2), 483–509 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Viswanathan, P., Chand, A.K.B.: A fractal procedure for monotonicity preserving interpolation. Appl. Math. Comp. 247, 190–204 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Viswanathan, P., Chand, A.K.B., Navascués, M.A.: Fractal perturbation preserving fundamental shapes: bounds on the scale factors. J. Math. Anal. Appl. 419, 804–817 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Viswanathan, P., Chand, A.K.B., Navascués, M.A.: Associate fractal function in \({\cal{L}}^p\)-spaces and in one sided uniform approximation. J. Math. Anal. Appl. 433, 862–876 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory 175, 1–18 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, H.Y., Fan, Z.L.: Analytical characteristics of fractal interpolation functions with function vertical scaling factors. Acta Math. Sin. (Chin. Ser.) 54(1), 147–158 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departmento de Matemática Aplicada, Escuela de Ingeniería y ArquitecturaUniversidad de ZaragozaZaragozaSpain
  2. 2.Department of MathematicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations