Advertisement

Sharp inequalities of Mitrinovic–Adamovic type

  • Ling Zhu
Original Paper

Abstract

In this paper, sharp Mitrinovic–Adamovic type inequalities for circular functions is established, and the analogue one of Lazarevic-type inequalities for hyperbolic functions is proved by a simple method. At the same time, the new double inequality for circular functions is extended to another interval.

Keywords

Mitrinovic–Adamovic inequality Lazarevic’s inequality Circular functions Hyperbolic functions 

Mathematics Subject Classification

Primary 26D15 Secondary 42A10 

Notes

Acknowledgements

This paper is supported by the National Natural Science Foundation of China Grants nos11471285 and 61772025.

References

  1. 1.
    Mitrinovic, D.S., Adamovic, D.D.: Sur une inegalite elementaire ou interviennent des fonctions trigonometriques. Univerzitet u Beogradu. Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika 149, 23–34 (1965)Google Scholar
  2. 2.
    Mitrinovic, D.S., Adamovic, D.D.: Complement A L’article “Sur une inegalite elementaire ou interviennent des fonctions trigonometriques”. Univerzitet u Beogradu. Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika 166, 31–32 (1966)Google Scholar
  3. 3.
    Lazarevic, I.: Neke nejednakosti sa hiperbolickim funkcijama. Univerzitet u Beogradu. Publikacije Elektrotehnickog Fakulteta. Serija Matematika i Fizika 170, 41–48 (1966)Google Scholar
  4. 4.
    Mitrinovic, D.S.: Analytic Inequalities. Springer, Berlin (1970)CrossRefzbMATHGoogle Scholar
  5. 5.
    Zhu, L.: Generalized Lazarevic’s inequality and its applications-part II. J. Inequal. Appl. 2009, 379142 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Wu, S.H., Baricz, A.: Generalizations of Mitrinovic, Adamovic and Lazarevic’s inequalities and their applications. Publ. Math. Debr. 75(3–4), 447–458 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zhu, L.: On Wilker-type inequalities. Math. Inequal. Appl. 10(4), 727–731 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Zhu, L.: From chins for mean value inequalities to Mitrinovic’s problem II. Int. J. Educ. Sci. Technol. 36, 118–125 (2005)Google Scholar
  9. 9.
    Anderson, G., Vamanamurthy, M., Vuorinen, M.: Monotonicity rules in calculus. Am. Math. Mon. 113, 805–816 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pinelis, I.: L’Hospital rules for monotonicity and the Wilker-Anglesio inequality. Am. Math. Mon. 111, 905–909 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Alzer, H., Qiu, S.-L.: Inequalities for means in two variables. Arch. Math. 80, 201–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nishimura, R.: New inequalities and infinite product formulas for trigonometric and the lemniscate functions. Math. Inequal. Appl. 18(2), 529–540 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wu, S.H., Li, S.G., Bencze, M.: Sharpened versions of Mitrinovic-Adamovic, Lazarevic and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9, 2688–2696 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Klen, R., Visuri, M., Vuorinen, M.: On Jordan type inequalities for hyperbolic functions. J. Inequal. Appl. 2010, 362548 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mortici, C.: A subtly analysis of Wilker inequality. Appl. Math. Comput. 231, 516–520 (2014)MathSciNetGoogle Scholar
  16. 16.
    Yang, Z.H.: Renements of a two-sided inequality for trigonometric functions. J. Math. Inequal. 7, 601–615 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yang, C.Y.: Inequalities on generalized trigonometric and hyperbolic functions. J. Math. Anal. Appl. 419, 775–782 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yang, Z.H., Chu, Y.M.: A note on Jordan, Mitrinovic-Adamovic, and Cusa inequalities. Abstr. Appl. Anal. 2014, 364076 (2014)Google Scholar
  19. 19.
    Yin, L., Huang, L., Qi, F.: Some inequalities for the generalized trigonometric and hyperbolic functions. Turk. J. Anal. Number Theory 2, 96–101 (2014)CrossRefGoogle Scholar
  20. 20.
    Biernacki, M., Krzyz, J.: On the monotonicity of certain functionals in the theory of analytic functions. Ann. Univ. M. Curie-Sklodowska 2, 134–145 (1955)Google Scholar
  21. 21.
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Springer, New York (1990)CrossRefzbMATHGoogle Scholar
  22. 22.
    Jeffrey, A.: Handbook of Mathematical Formulas and Integrals, 3rd edn. Elsevier Academic Press, Amsterdam (2004)zbMATHGoogle Scholar
  23. 23.
    Li, J.-L.: An identity related to Jordan’s inequality. Int. J. Math. Math. Sci. 6, 76782 (2006).  https://doi.org/10.1155/IJMMS/2006/76782
  24. 24.
    Yang, Z.-H., Chu, Y.-M., Zhang, X.-H.: Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 268, 1177–1198 (2015)MathSciNetGoogle Scholar
  25. 25.
    Yang, Z.-H., Chu, Y.-M.: Lazarevic and Cusa type inequalities for hyperbolic functions with two parameters and their applications. J. Inequal. Appl. 2015, 403 (2015).  https://doi.org/10.1186/s13660-015-0924-9
  26. 26.
    Campan, F.T.: The Story of Number \(\pi \), Ed. Albatros (Romania) (1977)Google Scholar
  27. 27.
    Iuskevici, A.P.: History of Mathematics in 16th and 16th Centuries. Moskva (1961)Google Scholar
  28. 28.
    Cajori, F.: A History of Mathematics, 2nd edn. New York (1929)Google Scholar
  29. 29.
    Huygens, C.: Oeuvres completes, publiees par la Societe hollandaise des science, Haga, 1888–1940, 20 volumesGoogle Scholar
  30. 30.
    Frame, J.S.: Some trigonometric, hyperbolic and elliptic approximations. Am. Math. Mon. 61, 623–626 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Chen, C.P., Sandor, J.: Sharp inequalities for trigonometric and hyperbolic functions. J. Math. Inequal. 9(1), 203–217 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhu, L.: Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, 485842 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Zhu, L.: Some new inequalities of the Huygens type. Comput. Math. Appl. 58, 1180–1182 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sun, Z.J., Zhu, L.: Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities. J. Math. Inequal. 7(4), 563–567 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Malesevic, B., Banjac, B., Jovovic, I.: A proof of two conjectures of Chao-Ping Chen for inverse trigonometric functions. J. Math. Inequal. 11(1), 151–162 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Chen, C.P.: Sharp Wilker and Huygens type inequalities for inverse trigonometric and inverse hyperbolic functions. Int. Trans. Spec. Funct. 23(12), 865–873 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sun, Z.J., Zhu, L.: Some refinements of inequalities for circular functions. J. Appl. Math. 2011, 869261 (2011)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sun, Z.J., Zhu, L.: On new Wilker-type inequalities. ISRN Math. Anal. 2011, 681702 (2011)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Chen, C.P., Cheung, W.S.: Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem. Int. Trans. Spec. Funct. 23(5), 325–336 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Chen, C.P., Cheung, W.S.: Sharpness of Wilker and Huygens type inequalities. J. Inequal. Appl. 2012, 72 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Neuman, E.: Wilker and Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions. Appl. Math. Comput. 230, 211–217 (2014)MathSciNetGoogle Scholar
  42. 42.
    Neuman, E.: Wilker and Huygens-type inequalities for Jacobian elliptic and theta functions. Int. Trans. Spec. Funct. 25(3), 240–248 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sandor, J., Bencze, M.: On Huygens’ trigonometric inequality. RGMIA Res. Rep. Collect. 8(3), Art.14 (2005)Google Scholar
  44. 44.
    Sandor, J.: Certain trigonometric inequalities. Octogon. Math. Mag. 9(1), 331–336 (2001)MathSciNetGoogle Scholar
  45. 45.
    Sandor, J., Olah-Gal, R.: On Cusa-Huygens type trigonometric and hyperbolic inequalities. Acta Univ. Sapientiae Math. 4(2), 145–153 (2012)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Sandor, J.: On Huygens’ inequalities and the theory of means. Int. J. Math. Math. Sci. 2012, 597490 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Neuman, E., Sandor, J.: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13(4), 715–723 (2010)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Chen, C.P., Cheung, W.S.: Sharp Cusa and Becker-Stark inequalities. J. Inequal. Appl. 2011, 136 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Sandor, J.: Sharp Cusa-Huygens and related inequalities. Notes Number Theory Discret. Math. 19(1), 50–54 (2013)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Yang, Z.H., Chu, Y.M.: Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, 166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Baricz, A.: Some inequalities involving generalized Bessel functions. Math. Inequal. Appl. 10(4), 827–842 (2007)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Yang, Z.H., Chu, Y.M., Zhang, X.H.: Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 268, 1177–1198 (2015)MathSciNetGoogle Scholar
  53. 53.
    Neuman, E., Sandor, J.: Inequalities involving trigonometric and hyperbolic functions. Math. Inequal. Appl. 13(4), 715–723 (2010)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Zhu, L.: New inequalities for hyperbolic functions and their applications. J. Inequal. Appl. 2012, 303 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Mortici, C.: The natural Approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 14(3), 535–541 (2011)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Lutovac, T., Malesevic, B., Mortici, C.: The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 216 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Gongshang UniversityHangzhouChina

Personalised recommendations