Significance of creativity and its development in mathematics classes for preservice teachers who are not trained to develop students’ creativity

Abstract

This research investigates the significance that the development of creativity in mathematics classes has for the preservice teachers from a master’s program in secondary school teaching, who are not trained on how to develop creativity. In the master’s final projects, preservice teachers reflect on their teaching practice at school and propose changes to improve it. In their reflection, some preservice teachers mention creativity and its enhancement. We did a document analysis and classified the comments about creativity from 198 master’s final projects focusing on the question: Which aspects of the teaching and learning process are related to creativity? Categories are based on didactic suitability criteria, the tool that participants use to analyze their teaching practice. Preservice teachers relate creativity and its development to several elements of the teaching and learning process. Most of the comments are associated with tasks where students can develop mathematical processes (argumentation, problem posing, modeling). They also identify the use of technology or manipulatives and the cooperative work as factors that could foster students’ creativity. We conclude that a significant number of preservice teachers assume that students’ creativity can be developed at school, particularly in mathematics classes. For them, creativity indirectly stems from the work on other aspects that are actually implemented in the classes.

This is a preview of subscription content, access via your institution.

Data availability

Master’s final projects are public documents, but they are not Internet accessible. They are kept in the Autonomous University of Barcelona (Plaça Cívica, Campus de la UAB. 08193 Cerdanyola del Vallès, Barcelona). If someone wants to revise the MFP, they can ask for them to the authors.

References

  1. Aktaş, M. (2016). Turkish high school teachers’ conceptions of creativity in mathematics. Journal of Education and Training Studies, 4(2), 42-52. https://doi.org/10.11114/jets.v4i2.1123.

  2. Alabert, M. (2012). Treball final de master [Master’s final project] (Unpublished master’s thesis) University of Barcelona Spain.

  3. Aljughaiman, A., & Mowrer-Reynolds, E. (2005). Teachers’ conceptions of creativity and creative students. The Journal of Creative Behavior, 39(1), 17-34. https://doi.org/10.1002/j.2162-6057.2005.tb01247.x.

  4. Amabile, TM., & Pillemer, J. (2012). Perspectives on the social psychology of creativity. The Journal of Creative Behavior, 46(1), 3-15. https://doi.org/10.1002/jocb.001.

  5. Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: a case for “mini-c” creativity. Psychology of Aesthetics, Creativity, and the Arts, 1(2), 73-79. https://doi.org/10.1037/1931-3896.1.2.73.

  6. Berrocal, I. (2014). Percentatges, una forma diferent de veure les coses [Percentages, a different way of viewing things] (Unpublished master’s thesis) University of Barcelona Spain.

  7. Bolden, D., Harries, A., & Newton, D. (2010). Pre-service primary teachers’ conceptions of creativity in mathematics. Educational Studies in Mathematics, 73(2), 143-157. https://doi.org/10.1007/s10649-009-9207-z.

  8. Breda, A., Font, V., & Lima, V.M.R. (2015). A noção de idoneidade didática e seu uso na formação de professores de matemática [The notion of didactic suitability and its use in the Mathematics teacher education]. Jornal Internacional de Estudos em Educação Matemática, 8(2), 1–41.

  9. Breda, A., Font, V., & Pino-Fan, L.R. (2018). Criterios valorativos y normativos en la didáctica de las matemáticas: el caso del constructo idoneidad didáctica [Assessing and normative criteria in Mathematics education: the case of the construct of didactic suitability]. Bolema, 32(60), 255–278. http://dx.doi.org/10.1590/1980-4415v32n60a13

  10. Breda, A., Pino-Fan, L.R., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: Criteria for the reflection and assessment on teaching practice. EURASIA Journal of Mathematics Science and Technology Education, 13(6), 1893–1918. http://dx.doi.org/10.12973/eurasia.2017.01207a

  11. Cervera, V. (2013). Treball final de màster [Master’s final project] (Unpublished master’s thesis) University of Barcelona Spain.

  12. Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. The Journal of Secondary Gifted Education, 17(1), 37-47. https://doi.org/10.4219/jsge-2005-393.

  13. Domingo, B. (2015). TFM. Proposta de millora. Geometria plana [MFP. Proposal of improvement. Plane geometry] (Unpublished master’s thesis). University of Barcelona, Spain.

  14. Font, V., Breda, A., & Pino-Fan, L.R. (2017). Análisis didáctico en un trabajo de fin de máster de un futuro profesor [Didactic analysis in a master’s final project of a preservice teacher]. In J.M. Muñoz Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M.L. Callejo, & J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 247-256). Zaragoza: SEIEM

  15. Gascón, J., & Nicolás, P. (2017). Can didactics say how to teach? The beginning of a dialogue between the anthropological theory of the didactic and other approaches. For the Learning of Mathematics, 37(3), 9-13.

  16. Genovard, C., Prieto, M. D., Bermejo, M. R., & Ferrándiz, C. (2006). History of creativity in Spain. In J. C. Kaufman, & R. J. Sternberg (Eds.), The International Handbook of Creativity (pp. 68-95). Cambridge University Press, Cambridge.

  17. Gil, M. I. (2011). Treball final de màster [Master’s final project] (Unpublished master’s thesis)University of Barcelona Spain.

  18. Giménez, J., Font, V., & Vanegas, Y. (2013). Designing professional tasks for didactical analysis as a research process. In C. Margolinas (Ed.), Task Design in Mathematics Education. Proceedings of ICMI Study 22 (pp. 581–590). Oxford: ICMI studies.

  19. Glăveanu, V. P. (2016). Introducing creativity and culture, the emerging field. In V. P. Glăveanu (Ed.), The Palgrave Handbook of Creativity and Culture Research (pp.1-12). Palgrave Macmillan, London.

  20. Godino, J. D. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas [Indicators of didactical suitability for mathematics teaching and learning processes]. Cuadernos de Investigación y Formación en Educación Matemática, 8(11), 111-132.

  21. Godino, J. D., Batanero, C., & Font, V. (2007). The Onto-Semiotic Approach to research in mathematics education. ZDM, 39(1-2), 127–135. http://dx.doi.org/10.1007/s11858-006-0004-1

  22. Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37-42.

  23. Guillén, L. (2014). Perímetres, àrees i volums [Perimeters, areas and volumes] (Unpublished master’s thesis) University of Barcelona Spain.

  24. Hosseini, A., & Watt, A. (2010). The effect of a teacher professional development in facilitating students’ creativity. Educational Research and Reviews, 5(8), 432-438.

  25. Joklitschke, J., Rott, B., & Schindler, M. (2018). Theories about mathematical creativity in contemporary research: a literature review. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol.3, pp.171–178). Umeå, Sweden: PME.

  26. Kampylis, P. G., & Valtanen, J. (2010). Redefining creativity—analyzing definitions, collocations, and consequences. The Journal of Creative Behavior, 44(3), 191-214. https://doi.org/10.1002/j.2162-6057.2010.tb01333.x.

  27. Kandemir, M. A., & Gür, H. (2007). Creativity training in problem solving: a model of creativity in mathematics teacher education. New Horizons in Education, 55(3), 107-122.

  28. Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: the four C model of creativity. Review of General Psychology, 13(1), 1-12. https://doi.org/10.1037/a0013688.

  29. Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. M., & Pelczer, I. (2013). Teacher’s views on creativity in mathematics education: an international survey. ZDM, 45(2), 309-324. https://doi.org/10.1007/s11858-012-0472-4.

  30. Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17-32. https://doi.org/10.1080/14794802.2011.550715.

  31. Lev-Zamir, H., & Leikin, R. (2013). Saying versus doing: teachers’ conceptions of creativity in elementary mathematics teaching. ZDM, 45(2), 295-308. https://doi.org/10.1007/s11858-012-0464-4.

  32. Levenson, E. (2011). Exploring collective mathematical creativity in elementary school. Journal of Creative Behavior, 45(3), 215-234. https://doi.org/10.1002/j.2162-6057.2011.tb01428.x.

  33. Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM, 49, 1033-1039. https://doi.org/10.1007/s11858-017-0892-2.

  34. Malaspina, U., & Font, V. (2010). The role of intuition in the solving of optimization problems. Educational Studies in Mathematics, 75(1), 107-130. http://dx.doi.org/10.1007/s10649-010-9243-8

  35. Mann, E. L. (2006). Creativity: the essence of mathematics. Journal for the Education of the Gifted, 30(2), 236-260. https://doi.org/10.4219/jeg-2006-264.

  36. Marin, S. (2011). Trabajo final de máster [Master’s final project] (Unpublished master’s thesis) University of Barcelona Spain.

  37. Miles, M.B., & Huberman, A.M. (1994). Qualitative data analysis: An expanded sourcebook (2nded.). Thousand Oaks, CA: Sage.

  38. Moll, N. (2012). L’àlgebra mitjançant la resolució de problemes. Treball final de màster [Algebra through problem solving. Master’s final project] (Unpublished master’s thesis). University of Barcelona, Spain.

  39. Nęcka, E. Grohman, M., & Słabosz, A. (2006). Creativity studies in Poland. In J. C. Kaufman, & R. J. Sternberg (Eds.), The International Handbook of Creativity (pp. 270-306). Cambridge University Press, Cambridge.

  40. OECD (2003). The PISA 2003 Assessment Framework. Mathematics, Reading, Science and Problem Solving knowledge and skills. Paris: OECD.

  41. Panaoura, A., & Panaoura, G. (2014). Teachers’ awareness of creativity in mathematical teaching and their practice. Issues in the Undergraduate Mathematics Preparation of School Teachers, 4, 1-11.

  42. Pásztor, A., Molnár, G., & Csapó, B. (2015). Technology-based assessment of creativity in educational context: the case of divergent thinking and its relation to mathematical achievement. Thinking Skills and Creativity, 18, 32-42 https://doi.org/10.1016/j.tsc.2015.05.004.

  43. Pochulu, M., Font, V., & Rodríguez, M. (2016). Desarrollo de la competencia en análisis didáctico de formadores de futuros profesores de matemática a través del diseño de tareas [Development of the didactic analysis competence of trainers of preservice Mathematics teachers through the design of tasks]. Revista latinoamericana de investigación en matemática educativa, 19(1), 71–98. http://dx.doi.org/10.12802/relime.13.1913.

  44. Ribot, A. (2015). Treball final de màster. La proporcionalitat [Master’s final project. Proporcionality] (Unpublished master’s thesis). University of Barcelona, Spain.

  45. Rosselló, M. (2012). Treball final: “del món a l’aula, de l’aula al món” [Final project: “from the world to the classroom, from the classroom to the world”] (Unpublished master’s thesis) University of Barcelona Spain.

  46. Sala, G., Font, V., Barquero, B., & Giménez, J. (2017). Contribución del EOS en la construcción de una herramienta de evaluación del pensamiento matemático creativo [OSA contribution to the construction of an assessment tool for the creative mathematical thinking]. In J. M. Contreras, P. Arteaga, G. R. Cañadas, M.M. Gea, B. Giacomone & M. M. López (Eds.). Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Retrieved from enfoqueontosemiotico.ugr.es/civeos.html

  47. Sánchez, A., Font, V., & Breda, A. (2019). Análisis de las respuestas de futuros profesores a un cuestionario sobre el desarrollo de la creatividad en el aula de matemáticas [Analysis of preservice teachers’ responses to a questionnaire about the development of creativity in mathematics classroom]. In J.M. Marbán, M. Arce, A. Maroto, J.M. Muñoz-Escolano, & Á. Alsina (Eds.), Investigación en educación matemática XXIII (pp. 543-552). Valladolid: SEIEM

  48. Sánchez, A., Font, V., Diamantidis, D., & Breda, A. (in press). Un estudio de caso de cómo entiende la creatividad y su desarrollo en la clase de matemáticas un futuro profesor de matemáticas [A case study of how a preservice teacher of mathematics understands creativity and its development in mathematics classroom]. In Investigación en educación matemática XXIV. Valencia: SEIEM.

  49. Seckel, M. J. (2016). Competencia en análisis didáctico en la formación inicial de profesores de educación general básica con mención en matemática [Competence in didactic analysis in the initial training of teachers of basic general education with mention in mathematics] (Unpublished doctoral dissertation) University of Barcelona Spain.

  50. Seckel, M. J., Breda, A., Sánchez, A, & Font, V. (2019). Criterios asumidos por profesores cuando argumentan sobre la creatividad matemática [Criteria assumed by teachers when they argue about mathematical creativity]. Educaçao e Pesquisa, 45, e211926. http://dx.doi.org/10.1590/s1678-4634201945211926.

  51. Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM Mathematics Education, 29(3), 75-80. https://doi.org/10.1007/s11858-997-0003-x.

  52. Spitzman, E., & Balconi, A. (2019). Social justice in action: a document analysis of the integration of social justice principles into teaching. Journal of the Scholarship of Teaching and Learning, 19(5), 1-17. https://doi.org/10.14434/josotl.v19i5.25071.

  53. Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? The Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389.

  54. Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM, 41(1), 13-27. https://doi.org/10.1007/s11858-008-0114-z.

  55. Sullivan, P., Knott, L., & Yang, Y. (2015). The relationships between task design, anticipated pedagogies, and student learning. In A, Watson, & M. Ohtani (Eds.), Task Design in Mathematics Education (pp. 83-114). Springer, New York.

  56. Torrance, E. P. (1974). Torrance tests of creative thinking: norms-technical manual Scholastic Testing Service Bensenville, IL.

  57. Tur, M. I. (2010). Trabajo final de máster [Master’s final project] (Unpublished master’s thesis) University of Barcelona Spain.

  58. Vanegas, Y., & Giménez, J. (2018). Creativity and problem solving with early childhood future teachers. In N. Amado, S. Carreira, & K. Jones (Eds.), Broadening the scope of research on mathematical problem solving (pp. 273-300). Springer Cham, Switzerland.

  59. Yazgan-Sağ, G., & Emre-Akdoğan, E. (2016). Creativity from two perspectives: prospective mathematics teachers and mathematician. Australian Journal of Teacher Education, 41(12), 25-40. https://doi.org/10.14221/ajte.2016v41n12.3.

  60. Yildiz, A., Baltaci, S., & Demir, B. K. (2017) Reflection on the analytic geometry courses: the Geogebra software and its effect on creative thinking. Universal Journal of Educational Research, 5(4), 620-630. https://doi.org/10.13189/ujer.2017.050411.

Download references

Funding

This work is part of the research project PGC2018-098603-B-I00 (MCIU/AEI/FEDER, UE), with the support of the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya and the European Social Fund (2019FI_B1 00032), and the Programa Juan de la Cierva-Formación 2017 (FJCI-2017-34021).

Author information

Affiliations

Authors

Contributions

Alicia Sánchez and Vicenç Font designed the work. Alicia Sánchez searched for the comments in the MFP (steps 1 and 2 of data analysis in the methodology section). All authors participated in the data analysis and interpretation, and classifying of the comments consensually. Alicia Sánchez was a major contributor in writing the manuscript. Vicenç Font and Adriana Breda substantively revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vicenç Font.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez, A., Font, V. & Breda, A. Significance of creativity and its development in mathematics classes for preservice teachers who are not trained to develop students’ creativity. Math Ed Res J (2021). https://doi.org/10.1007/s13394-021-00367-w

Download citation

Keywords

  • Creativity
  • Didactic suitability criteria
  • Master’s final project
  • Preservice teachers