Generation of Charged SiC Nanoparticles During HWCVD Process

Abstract

Charged nanoparticles have been shown to be spontaneously generated in the gas phase in various chemical vapor deposition (CVD). Furthermore, it has been shown that these charged nanoparticles can contribute to the growth of thin films, nanowires, nanotetrapods and so on. Here, the generation of charged silicon carbide (SiC) nanoparticles in the gas phase during a hot wire CVD process was studied by capturing nanoparticles with a different delay time on a silicon monoxide membrane of the copper mesh grid for transmission electron microscope. The average size of SiC nanoparticles captured for 30 s increased from 2.9 to 6.1 nm with increasing delay time from 0 to 60 min. The deposition behavior of SiC films was affected by the applied bias on a substrate holder. A homo-epitaxial SiC film as thick as ~ 200 nm was grown under the substrate bias of − 200 V, whereas polycrystalline SiC films were grown under 0 V and + 15 V. It indicates that nanoparticles generated in the gas phase should be charged.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Hwang, N.-M., Kim, D.-Y.: Charged clusters in thin film growth. Int. Mater. Rev. 49(3–4), 171–190 (2004). https://doi.org/10.1179/095066004225021891

    CAS  Article  Google Scholar 

  2. 2.

    Niederberger, M., Cölfen, H.: Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8(28), 3271–3287 (2006). https://doi.org/10.1039/b604589h

    CAS  Article  Google Scholar 

  3. 3.

    Cölfen, H., Markus, A.: Mesocrystals and Nonclassical Crystallization. Wiley, Chichester (2008)

    Google Scholar 

  4. 4.

    Gebauer, D., Cölfen, H.: Prenucleation clusters and non-classical nucleation. Nano Today 6(6), 564–584 (2011). https://doi.org/10.1016/j.nantod.2011.10.005

    CAS  Article  Google Scholar 

  5. 5.

    Henry Teng, H.: How ions and molecules organize to form crystals. Elements 9(3), 189–194 (2013). https://doi.org/10.2113/gselements.9.3.189

    CAS  Article  Google Scholar 

  6. 6.

    Liao, H.-G., Cui, L., Whitelam, S., Zheng, H.: Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084), 1011–1014 (2012). https://doi.org/10.1126/science.1219185

    CAS  Article  Google Scholar 

  7. 7.

    Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P.: High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 335(6077), 61–64 (2012). https://doi.org/10.1126/science.1217654

    CAS  Article  Google Scholar 

  8. 8.

    Yuk, J.M., Jeong, M., Kim, S.Y., Seo, H.K., Kim, J., Lee, J.Y.: In situ atomic imaging of coalescence of Au nanoparticles on graphene: rotation and grain boundary migration. Chem. Commun. 49(98), 11479–11481 (2013). https://doi.org/10.1039/C3CC46545D

    CAS  Article  Google Scholar 

  9. 9.

    Li, J., Wang, Z., Chen, C., Huang, S.: Atomic-scale observation of migration and coalescence of au nanoclusters on YSZ surface by aberration-corrected STEM. Sci. Rep. 4, 5521 (2014). https://doi.org/10.1038/srep05521

    CAS  Article  Google Scholar 

  10. 10.

    Hwang, N.-M.: Non-classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer Series in Surface Sciences, vol. 60. Springer, Dordrecht (2016)

    Google Scholar 

  11. 11.

    Kim, D.-S., Hwang, N.-M.: Synthesis of nanostructures using charged nanoparticles spontaneously generated in the gas phase during chemical vapor deposition. J. Phys. D Appl. Phys. 51(46), 3002–3024 (2018). https://doi.org/10.1088/1361-6463/aae4b7

    CAS  Article  Google Scholar 

  12. 12.

    Park, S.-W., Jung, J.-S., Kim, K.-S., Kim, K.-H., Hwang, N.-M.: Effect of bias applied to the substrate on the low temperature growth of silicon epitaxial films during RF-PECVD. Cryst. Growth Des. 18(10), 5816–5823 (2018). https://doi.org/10.1021/acs.cgd.8b00384

    CAS  Article  Google Scholar 

  13. 13.

    Jung, J.-S., Lee, S.-H., Kim, D.-S., Kim, K.-S., Park, S.-W., Hwang, N.-M.: Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition. J. Cryst. Growth 458, 8–15 (2017). https://doi.org/10.1016/j.jcrysgro.2016.10.023

    CAS  Article  Google Scholar 

  14. 14.

    Park, S.-H., Park, J.-W., Yang, S.-M., Kim, K.-H., Hwang, N.-M.: Effect of electric bias on the deposition behavior of ZnO nanostructures in the chemical vapor deposition process. J. Phys. Chem. C 119(44), 25047–25052 (2015). https://doi.org/10.1021/acs.jpcc.5b06796

    CAS  Article  Google Scholar 

  15. 15.

    Youn, W.-K., Lee, S.-S., Lee, J.-Y., Kim, C.-S., Hwang, N.-M., Iijima, S.: Comparison of the deposition behavior of charged silicon nanoparticles between floating and grounded substrates. J. Phys. Chem. C 118(22), 11946–11953 (2014). https://doi.org/10.1021/jp5001144

    CAS  Article  Google Scholar 

  16. 16.

    Kwon, J.H., Kim, D.Y., Kim, K.-S., Hwang, N.-M.: Preparation of highly (002) oriented Ti films on a floating Si (100) substrate by RF magnetron sputtering. Electron. Mater. Lett. 16(1), 14–21 (2020). https://doi.org/10.1007/s13391-019-00182-3

    CAS  Article  Google Scholar 

  17. 17.

    Park, S., Jang, G., Kim, K., Hwang, N.: Comparison of plasma effect on dewetting kinetics of Sn films between grounded and floating substrates. Electron. Mater. Lett. 16(1), 72–80 (2020). https://doi.org/10.1007/s13391-019-00190-3

    CAS  Article  Google Scholar 

  18. 18.

    Lee, Y., Han, H.N., Kim, W., Hwang, N.M.: Effect of bipolar charging of SiH4 on the growth rate and crystallinity of silicon films grown in the atmospheric pressure chemical vapor deposition process. Electron. Mater. Lett. 16, 385–395 (2020). https://doi.org/10.1007/s13391-020-00217-0

    CAS  Article  Google Scholar 

  19. 19.

    Park, J.-W., Kim, K.-S., Hwang, N.-M.: Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon 106, 289–294 (2016). https://doi.org/10.1016/j.carbon.2016.05.035

    CAS  Article  Google Scholar 

  20. 20.

    Park, J.-W., Kim, K.-H., Hwang, N.-M.: Effect of the substrate bias in diamond deposition during hot filament chemical vapor deposition: approach by non-classical crystallization. Adv. Mater. Lett. 9(9), 638–642 (2018). https://doi.org/10.5185/amlett.2018.2082

    CAS  Article  Google Scholar 

  21. 21.

    Hong, J.-S., Kim, C.-S., Yoo, S.-W., Park, S.-H., Hwang, N.-M., Choi, H.-M., Kim, D.-B., Kim, T.-S.: In-situ measurements of charged nanoparticles generated during hot wire chemical vapor deposition of silicon using particle beam mass spectrometer. Aerosol Sci. Technol. 47(1), 46–51 (2013). https://doi.org/10.1080/02786826.2012.725959

    CAS  Article  Google Scholar 

  22. 22.

    Finger, F., Astakhov, O., Bronger, T., Carius, R., Chen, T., Dasgupta, A., Gordijn, A., Houben, L., Huang, Y., Klein, S.: Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells. Thin Solid Films 517(12), 3507–3512 (2009). https://doi.org/10.1016/j.tsf.2009.01.115

    CAS  Article  Google Scholar 

  23. 23.

    Pawbake, A., Mayabadi, A., Waykar, R., Kulkarni, R., Jadhavar, A., Waman, V., Parmar, J., Bhattacharyya, S., Ma, Y.R., Devan, R., Pathan, H., Jadkar, S.: Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by hot wire-CVD. Mater. Res. Bull. 76, 205–215 (2016). https://doi.org/10.1016/j.materresbull.2015.12.012

    CAS  Article  Google Scholar 

  24. 24.

    Tehrani, F.S., Badaruddin, M., Rahbari, R., Muhamad, M., Rahman, S.: Low-pressure synthesis and characterization of multiphase SiC by HWCVD using CH4/SiH4. Vacuum 86(8), 1150–1154 (2012). https://doi.org/10.1016/j.vacuum.2011.10.022

    CAS  Article  Google Scholar 

  25. 25.

    Tabata, A., Komura, Y., Narita, T., Kondo, A.: Growth of silicon carbide thin films by hot-wire chemical vapor deposition from SiH4/CH4/H2. Thin Solid Films 517(12), 3516–3519 (2009). https://doi.org/10.1016/j.tsf.2009.01.042

    CAS  Article  Google Scholar 

  26. 26.

    Chen, T., Köhler, F., Heidt, A., Huang, Y., Finger, F., Carius, R.: Microstructure and electronic properties of microcrystalline silicon carbide thin films prepared by hot-wire CVD. Thin Solid Films 519(14), 4511–4515 (2011). https://doi.org/10.1016/j.tsf.2011.01.336

    CAS  Article  Google Scholar 

  27. 27.

    Zhiyong, Z., Wu, Z., Xuewen, W., Tianming, L., Zhiming, C., Shuixian, Z.: Epitaxial monocrystalline SiC films grown on Si by HFCVD at 780 °C. Mater. Sci. Eng. B 75(2–3), 177–179 (2000). https://doi.org/10.1016/S0921-5107(00)00357-3

    Article  Google Scholar 

  28. 28.

    Van Zeghbroeck, B., Robinson, H., Brow, R.R.: Hot filament CVD growth of 4H-SiC epitaxial layers. In: Stahlbush, R., Neudeck, P.G., Bhalla, A., Devaty, R.P., Dudley, M., Lelis, A.J. (eds.) Proceedings of the International Conference on Silicon Carbide and Related Materials 2017, Washingtin, DC, U.S., Sep 17–22 2018. Material Science Forum, pp. 120–123. Trans Tech Publications, Ltd.

  29. 29.

    Hens, P., Brow, R., Robinson, H., Cromar, M., Van Zeghbroeck, B.: Epitaxial growth of cubic silicon carbide on silicon using hot filament chemical vapor deposition. Thin Solid Films 635, 48–52 (2017). https://doi.org/10.1016/j.tsf.2017.02.024

    CAS  Article  Google Scholar 

  30. 30.

    Robbins, J., Seman, M.: Production of bulk silicon carbide with hot-filament chemical vapor deposition. US Patent 8409351

  31. 31.

    Chung, Y.-B., Lee, S.-H., Bae, S.-H., Park, H.-K., Jung, J.-S., Hwang, N.-M.: Effect of the initial structure on the electrical property of crystalline silicon films deposited on glass by hot-wire chemical vapor deposition. J. Nanosci. Nanotechnol. 12(7), 5947–5951 (2012). https://doi.org/10.1166/jnn.2012.6415

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A5A6017701) and by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (No. 2013M3A6B1078874).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nong-Moon Hwang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Kim, D.Y., Kwon, J.H. et al. Generation of Charged SiC Nanoparticles During HWCVD Process. Electron. Mater. Lett. (2020). https://doi.org/10.1007/s13391-020-00230-3

Download citation

Keywords

  • SiC
  • Hot wire CVD
  • Nanoparticles
  • Epitaxial SiC deposition
  • DC electric bias