Skip to main content
Log in

Fe3O4–ZnO Core–Shell Nanoparticles Fabricated by Ultra-Thin Atomic Layer Deposition Technique as a Drug Delivery Vehicle

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Fe3O4–ZnO nanoparticles with core–shell structures were successfully fabricated by an atomic layer deposition method. The core–shell NPs consisted of superparamagnetic Fe3O4 cores of 100 nm average size and conformal ZnO shells of 10 nm thickness. The NPs showed a saturation magnetization of ~ 23 emu/g, which is suitable for magnetic delivery of the particles. Cytotoxicity testing revealed that the Fe3O4–ZnO NPs have high cell viability (over 90%) after 24 h culture. Also, they exhibited a high ibuprofen-loading capacity (640 μg per mg of the particles) and good release ability (> 90% after 72 h in simulated body fluid). As a result, the Fe3O4–ZnO nanoparticles with conformal ultra-thin ZnO shell layers are anticipated as promising drug delivery vehicles with acceptable cell viability and high drug loading-release abilities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu, J.K., Zhang, F.F., Sun, J.J., Sheng, J., Wang, F., Sun, M.: Bio and nanomaterials based on Fe3O4. Molecules 19(12), 21506–21528 (2014). https://doi.org/10.3390/molecules191221506

    Article  Google Scholar 

  2. Shen, Z.Y., Wu, A.G., Chen, X.Y.: Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm. 14(5), 1352–1364 (2017). https://doi.org/10.1021/acs.molpharmaceut.6b00839

    Article  Google Scholar 

  3. Liu, H.L., Wu, J.H., Min, J.H., Lee, J.H., Kim, Y.K.: Synthesis and characterization of magnetic-luminescent Fe3O4–CdSe core–shell nanocrystals. Electron. Mater. Lett. 15(1), 102–110 (2019). https://doi.org/10.1007/s13391-018-0097-z

    Article  Google Scholar 

  4. Nosrati, H., Sefidi, N., Sharafi, A., Danafar, H., Manjili, H.K.: Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorgan. Chem. 76, 501–509 (2018). https://doi.org/10.1016/j.bioorg.2017.12.033

    Article  Google Scholar 

  5. Sukhorukova, I.V., Zhitnyak, I.Y., Koyalslkii, A.M., Mateev, A.T., Lebedev, O.I., Li, X., Gloushankova, N.A., Golberg, D., Shtansky, D.V.: Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS Appl. Mater. Interfaces 7(31), 17217–17225 (2015). https://doi.org/10.1021/acsami.5b04101

    Article  Google Scholar 

  6. Madrid, S.I.U., Pal, U., Kang, Y.S., Kim, J., Kwon, H., Kim, J.: Fabrication of Fe3O4@mSiO2 core–shell composite nanoparticles for drug delivery applications. Nanoscale Res. Lett. 10, 1–8 (2015). https://doi.org/10.1186/s11671-015-0920-5

    Article  Google Scholar 

  7. Shahabadi, N., Khorshidi, A., Zhaleh, H., Kashanian, S.: Synthesis, characterization, cytotoxicity and DNA binding studies of Fe3O4@SiO2 nanoparticles coated by an antiviral drug lamivudine. J. Drug Deliv. Sci. Technol. 46, 55–65 (2018). https://doi.org/10.1016/j.jddst.2018.04.016

    Article  Google Scholar 

  8. Yang, Y.M., Gong, B.Y., Yang, Y., Xie, A.J., Shen, Y.H., Zhu, M.Z.: Construction and synergistic anticancer efficacy of magnetic targeting cabbage-like Fe3O4@MoS2@ZnO drug carriers. J. Mater. Chem. B 6(22), 3792–3799 (2018). https://doi.org/10.1039/c8tb00608c

    Article  Google Scholar 

  9. Shen, L.Z., Li, B., Qiao, Y.S.: Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 11(2), 29 (2018). https://doi.org/10.3390/ma11020324

    Google Scholar 

  10. Yang, C.Q., Wang, G., Lu, Z.Y., Sun, J., Zhuang, J.Q., Yang, W.S.: Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. J. Mater. Chem. 15(39), 4252–4257 (2005). https://doi.org/10.1039/b505018a

    Article  Google Scholar 

  11. Hanini, A., Schmitt, A., Kacem, K., Chau, F., Ammar, S., Gavard, J.: Evaluation of iron oxide nanoparticle biocompatibility. Int. J. Nanomed. 6, 787–794 (2011). https://doi.org/10.2147/ijn.s17574

    Google Scholar 

  12. Qiu, H.J., Cui, B., Li, G.M., Yang, J.H., Peng, H.X., Wang, Y.S., Li, N.N., Gao, R.C., Chang, Z.G., Wang, Y.Y.: Novel Fe3O4@ZnO@mSiO2 nanocarrier for targeted drug delivery and controllable release with microwave irradiation. J. Phys. Chem. C 118(27), 14929–14937 (2014). https://doi.org/10.1021/jp502820r

    Article  Google Scholar 

  13. Islam, M.N., Abbas, M., Sinha, B., Joeng, J.R., Kim, C.: Silica encapsulation of sonochemically synthesized iron oxide nanoparticles. Electron. Mater. Lett. 9(6), 817–820 (2013). https://doi.org/10.1007/s13391-013-6019-1

    Article  Google Scholar 

  14. Wu, W., Wu, Z.H., Yu, T., Jiang, C.Z., Kim, W.S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16(2), 43 (2015). https://doi.org/10.1088/1468-6996/16/2/023501

    Article  Google Scholar 

  15. Longrie, D., Deduytsche, D., Detavernier, C.: Reactor concepts for atomic layer deposition on agitated particles: a review. J. Vac. Sci. Technol. A 32(1), 13 (2014). https://doi.org/10.1116/1.4851676

    Article  Google Scholar 

  16. George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110(1), 111–131 (2010). https://doi.org/10.1021/cr900056b

    Article  Google Scholar 

  17. Choi, N.J., Kim, K.W., Son, H.S., Lee, S.N.: Optical and electrical characterization of AZO films grown on c-plane sapphire substrates by atomic layer deposition. Electron. Mater. Lett. 10(1), 259–262 (2014). https://doi.org/10.1007/s13391-013-3042-1

    Article  Google Scholar 

  18. Martinez-Carmona, M., Gun’ko, Y., Vallet-Regi, M.: ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials 8(4), 27 (2018). https://doi.org/10.3390/nano8040268

    Article  Google Scholar 

  19. Seong, S., Jung, Y.C., Lee, T., Park, I.S., Ahn, J.: Fabrication of Fe3O4–ZnO core-shell nanoparticles by rotational atomic layer deposition and their multi-functional properties. Curr. Appl. Phys. 16(12), 1564–1570 (2016). https://doi.org/10.1016/j.cap.2016.09.014

    Article  Google Scholar 

  20. Wheate, N.J., Apps, M.G., Khalifa, H., Doughty, A., Patel, A.R.: Determining the ibuprofen concentration in liquid-filled gelatin capsules to practice collecting and interpreting experimental data, and evaluating the methods and accuracy of quality testing. J. Chem. Educ. 94(8), 1107–1110 (2017). https://doi.org/10.1021/acs.jchemed.6b00955

    Article  Google Scholar 

  21. Safi, S., Karimzadeh, F., Labbaf, S.: Mesoporous and hollow hydroxyapatite nanostructured particles as a drug delivery vehicle for the local release of ibuprofen. Mater. Sci. Eng. C Mater. Biol. Appl. 92, 712–719 (2018). https://doi.org/10.1016/j.msec.2018.07.004

    Article  Google Scholar 

  22. Xuan, S.H., Wang, Y.X.J., Yu, J.C., Leung, K.C.F.: Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 21(21), 5079–5087 (2009). https://doi.org/10.1021/cm901618m

    Article  Google Scholar 

  23. Zou, P., Hong, X., Chu, X.Y., Li, Y.J., Liu, Y.C.: Multifunctional Fe3O4/ZnO nanocomposites with magnetic and optical properties. J. Nanosci. Nanotechnol. 10(3), 1992–1997 (2010). https://doi.org/10.1166/jnn.2010.2098

    Article  Google Scholar 

  24. Setyawati, M.I., Tay, C.Y., Leong, D.T.: Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small 11(28), 3458–3468 (2015). https://doi.org/10.1002/smll.201403232

    Article  Google Scholar 

  25. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  26. Cai, X.L., Luo, Y.N., Zhang, W.Y., Du, D., Lin, Y.H.: pH-Sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces 8(34), 22442–22450 (2016). https://doi.org/10.1021/acsami.6b04933

    Article  Google Scholar 

  27. Roychowdhury, A., Pati, S.P., Mishra, A.K., Kumar, S., Das, D.: Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: structural, optical and magnetization studies. J. Phys. Chem. Solids 74(6), 811–818 (2013). https://doi.org/10.1016/j.jpcs.2013.01.012

    Article  Google Scholar 

  28. Davila-Grana, A., Diego-Gonzalez, L., Gonzalez-Fernandez, A., Simon-Vazquez, R.: Synergistic effect of metal oxide nanoparticles on cell viability and activation of MAP kinases and NFB. Int. J. Mol. Sci. 19(1), 16 (2018). https://doi.org/10.3390/ijms19010246

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program (2012R1A6A1029029) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and the Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Ahn.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seong, S., Park, IS., Jung, Y.C. et al. Fe3O4–ZnO Core–Shell Nanoparticles Fabricated by Ultra-Thin Atomic Layer Deposition Technique as a Drug Delivery Vehicle. Electron. Mater. Lett. 15, 493–499 (2019). https://doi.org/10.1007/s13391-019-00147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00147-6

Keywords

Navigation