Electronic Materials Letters

, Volume 15, Issue 2, pp 159–165 | Cite as

Study of Domain Switching Using Piezoresponse Force Microscopy in Ca0.4Sr0.6Bi4Ti4O15 Thin Film for Electromechanical Applications

  • Supratim MitraEmail author
  • Satakshi Gupta
  • Aneesh M. Joseph
  • Umesh Kumar Dwivedi
Original Article - Electronics, Magnetics and Photonics


An attempt has been made to synthesize (Ca0.4Sr0.6)Bi4Ti4O15 (CSBT) thin film using pulsed laser deposition method and successfully optimized the deposition conditions. Film with the desired phase was obtained at a substrate temperature 650 °C based on phase and morphology studies using vast analytical techniques. The average thickness and grain size of as prepared film was found to be in the range of 330–400 nm and 40–65 nm. Piezoresponse force microscopy showed a complete domain reversal using switching spectroscopy. A comparatively high effective d 33 *  value as ~ 120 pm/V has been achieved. These results suggest that CSBT has a great future potential in electromechanical applications specially in high-temperature sensors and actuators.

Graphical Abstract


Piezoelectricity Thin films Piezoresponse force microscopy (PFM) Electrical properties 



Author SM would like to gratefully acknowledge INUP-IIT Bombay for carrying out the entire experimental work.


The work is supported by Department of Science and Technology-Science and Engineering Research Board, India under Early Career Research Award scheme (Grant No. ECR/2016/000794/ES).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

13391_2019_119_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2209 kb)


  1. 1.
    Nagata, H., Takenaka, T.: Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with Sr–Bi–Ti–Ta system. Ferroelectrics 273(1), 359–364 (2002)CrossRefGoogle Scholar
  2. 2.
    Li, G., Zheng, L., Yin, Q., Jiang, B., Cao, W.: Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (Ca, Sr)Bi4Ti4O15 ceramics. J. Appl. Phys. 98(6), 064108 (2005)CrossRefGoogle Scholar
  3. 3.
    Suresh, M.B., Ramana, E.V., Babu, S.N., Suryanarayana, S.V.: Comparison of electrical and dielectric properties of BLSF materials in Bi–Fe–Ti–O and Bi–Mn–Ti–O systems. Ferroelectrics 332(1), 57–63 (2006)CrossRefGoogle Scholar
  4. 4.
    Islam, M.S., Kano, J., Yin, Q.R., Kojima, S.: Doping effects on dynamical physical properties of Ca0.6Sr0.4Bi4Ti4O15 ferroelectric ceramics with layered-perovskite structure. J. Electroceram. 28(2), 89–94 (2012)CrossRefGoogle Scholar
  5. 5.
    MV, Gelfuso, Daniel, T., Eiras, J.A.: Synthesis and structural, ferroelectric, and piezoelectric properties of SrBi4Ti4O15 ceramics. J. Am. Ceram. Soc. 82(9), 2368–2372 (1999)CrossRefGoogle Scholar
  6. 6.
    Haixue, Y., Chengen, L., Jiaguang, Z., Weimin, Z., Lianxin, H., Yuxin, S., Youhua, Y.: Effects of A-site (NaCe) substitution with Na-deficiency on structures and properties of CaBi 4 Ti 4 O 15-based high-curie-temperature ceramics. Jpn. J. Appl. Phys. 40(11R), 6501 (2001)Google Scholar
  7. 7.
    Maeder, M.D., Damjanovic, D., Voisard, C., Setter, N.: Piezoelectric properties of SrBi4Ti4O15 ferroelectric ceramics. J. Mater. Res. 17(6), 1376–1384 (2011)CrossRefGoogle Scholar
  8. 8.
    Liaoying, Z., Guorong, L., Wangzhong, Z., Qinrui, Y.: The structure and properties of Bi-layered piezoelectric ceramics Bi 4 (Ca, Sr)Ti4O15. Jpn. J. Appl. Phys. 41(12B), L1471 (2002)Google Scholar
  9. 9.
    Zhang, S.-T., Sun, B., Yang, B., Chen, Y.-F., Liu, Z.-G., Ming, N.-B.: SrBi4Ti4O15 thin films of Ti containing bismuth-layered-ferroelectrics prepared by pulsed laser deposition. Mater. Lett. 47(6), 334–338 (2001)CrossRefGoogle Scholar
  10. 10.
    Nie, R., Chen, Q., Liu, H., Xing, J., Zhu, J., Xiao, D.: MnO2-doped (Ca0.4, Sr0.6)Bi4Ti4O15 high-temperature piezoelectric ceramics with improved thermal stability. J. Mater. Sci. 51(11), 5104–5112 (2016)CrossRefGoogle Scholar
  11. 11.
    Korzunova, L.: PmP118. Piezoelectric ceramics for high-temperature transducers. Ferroelectrics 134(1), 175–180 (1992)CrossRefGoogle Scholar
  12. 12.
    Garg, A., Barber, Z.H., Dawber, M., Scott, J.F., Snedden, A., Lightfoot, P.: Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi4 − xNdxTi3O12 films. Appl. Phys. Lett. 83(12), 2414–2416 (2003)CrossRefGoogle Scholar
  13. 13.
    Shur, V., Rumyantsev, E., Makarov, S.: Kinetics of phase transformations in real finite systems: application to switching in ferroelectrics. J. Appl. Phys. 84(1), 445–451 (1998)CrossRefGoogle Scholar
  14. 14.
    Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., Streiffer, S.: Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100(5), 051606 (2006)CrossRefGoogle Scholar
  15. 15.
    Huang, H., Zhong, X.L., Xie, S.H., Zhang, Y., Wang, J.B., Zhou, Y.C.: Piezoresponse force microscopy observation of domain switching in Bi3.15Nd0.85Ti3O12 thin film prepared by pulsed laser deposition. J. Appl. Phys. 110(5), 054105 (2011)CrossRefGoogle Scholar
  16. 16.
    Kim, D.J., Jo, J.Y., Kim, T.H., Yang, S.M., Chen, B., Kim, Y.S., Noh, T.W.: Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr, Ti)O3 capacitors. Appl. Phys. Lett. 91(13), 132903 (2007)CrossRefGoogle Scholar
  17. 17.
    Wu, A., Vilarinho, P.M., Wu, D., Gruverman, A.: Abnormal domain switching in Pb(Zr, Ti)O3 thin film capacitors. Appl. Phys. Lett. 93(26), 262906 (2008)CrossRefGoogle Scholar
  18. 18.
    Gruverman, A., Wu, D., Scott, J.F.: Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys. Rev. Lett. 100(9), 097601 (2008)CrossRefGoogle Scholar
  19. 19.
    Keeney, L., Zhang, P.F., Groh, C., Pemble, M.E., Whatmore, R.W.: Piezoresponse force microscopy investigations of Aurivillius phase thin films. J. Appl. Phys. 108(4), 042004 (2010)CrossRefGoogle Scholar
  20. 20.
    Yan, J., Hu, G., Liu, Z., Fan, S., Zhou, Y., Yang, C., Wu, W.: Enhanced ferroelectric properties of predominantly (100)-oriented CaBi4Ti4O15 thin films on Pt∕Ti∕SiO2∕Si substrates. J. Appl. Phys. 103(5), 056109 (2008)CrossRefGoogle Scholar
  21. 21.
    Sun, H., Zhu, J., Fang, H., Chen, X.-B.: Large remnant polarization and excellent fatigue property of vanadium-doped SrBi4Ti4O15 thin films. J. Appl. Phys. 100(7), 074102 (2006)CrossRefGoogle Scholar
  22. 22.
    Sohn, D.S., Xianyu, W.X., Lee, W.I., Lee, I., Chung, I.: Ferroelectric SrBi4Ti4O15 thin films with high polarization grown on an IrO2 layer. Appl. Phys. Lett. 79(22), 3672–3674 (2001)CrossRefGoogle Scholar
  23. 23.
    Gruverman, A., Pignolet, A., Satyalakshmi, K.M., Alexe, M., Zakharov, N.D., Hesse, D.: Nanoscopic switching behavior of epitaxial SrBi2Ta2O9 films deposited by pulsed laser deposition. Appl. Phys. Lett. 76(1), 106–108 (1999)CrossRefGoogle Scholar
  24. 24.
    Liu, J.S., Zhang, S.R., Dai, L.S., Yuan, Y.: Domain evolution in ferroelectric thin films during fatigue process. J. Appl. Phys. 97(10), 104102 (2005)CrossRefGoogle Scholar
  25. 25.
    Zhang, S.-T., Yang, B., Chen, Y.-F., Liu, Z.-G., Yin, X.-B., Wang, Y., Wang, M., Ming, N.-B.: SrBi4Ti4O15 thin films and their ferroelectric fatigue behaviors under varying switching pulse widths and frequencies. J. Appl. Phys. 91(5), 3160–3164 (2002)CrossRefGoogle Scholar
  26. 26.
    Kato, K., Tanaka, K., Suzuki, K., Kimura, T., Nishizawa, K., Miki, T.: Impact of oxygen ambient on ferroelectric properties of polar-axis-oriented CaBi4Ti4O15 films. Appl. Phys. Lett. 86(11), 112901 (2005)CrossRefGoogle Scholar
  27. 27.
    Fan, S., Che, Q., Zhang, F.: Preparation and ferroelectric property of (100)-oriented Ca0.4Sr0.6Bi4Ti4O15 thin film on Pt/Ti/Sio2/si substrate. Surf. Rev. Lett. 17(05n06), 445–449 (2010)CrossRefGoogle Scholar
  28. 28.
    Boyle, T.J., Buchheit, C.D., Rodriguez, M.A., Al-Shareef, H.N., Hernandez, B.A., Scott, B., Ziller, J.W.: Formation of SrBi2Ta2O9: Part I. Synthesis and characterization of a novel “sol-gel” solution for production of ferroelectric SrBi2Ta2O9 thin films. J. Mater. Res. 11(9), 2274–2281 (2011)CrossRefGoogle Scholar
  29. 29.
    Wang, H., Fu, L.W., Shang, S.X., Wang, X.L., Jiang, M.H.: The influence of substrate temperature and annealing on phase formation and crystalline properties of bismuth titanate film by APMOCVD. J. Phys. D Appl. Phys. 27(2), 393 (1994)CrossRefGoogle Scholar
  30. 30.
    Simões, A.Z., Ramírez, M.A., Ries, A., Varela, J.A., Longo, E., Ramesh, R.: Electromechanical properties of calcium bismuth titanate films: a potential candidate for lead-free thin-film piezoelectrics. Appl. Phys. Lett. 88(7), 072916 (2006)CrossRefGoogle Scholar
  31. 31.
    Zhanga, F., Donga, P., Fan, S.: Electrical properties of predominantly (100)-oriented of Ca2 + modified SrBi4Ti4O15 thin film deposited on Pt/Ti/SiO2/Si substrates. J. Ceram. Process. Res. 16(5), 511–514 (2015)Google Scholar
  32. 32.
    Yang, Y.C., Song, C., Wang, X.H., Zeng, F., Pan, F.: Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films. Appl. Phys. Lett. 92(1), 012907 (2008)CrossRefGoogle Scholar
  33. 33.
    Mitra, S., Karthik, T., Kolte, J., Ade, R., Venkataramani, N., Kulkarni, A.R.: Origin of enhanced piezoelectric properties and room temperature multiferroism in MnO2 added 0.90(Li0.12Na0.88NbO3)-0.10BaTiO3 ceramic. Scr. Mater. 149, 134–138 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of PhysicsBanasthali VidyapithBanasthaliIndia
  2. 2.Amity School of Applied SciencesAmity UniversityJaipurIndia
  3. 3.IIT Bombay Nanofabrication Facility, Indian Institute of Technology BombayMumbaiIndia

Personalised recommendations