Electronic Materials Letters

, Volume 14, Issue 6, pp 657–668 | Cite as

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jea Woong Jo
  • Yongseok Yoo
  • Taehee Jeong
  • SeJin Ahn
  • Min Jae Ko


Organic–inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< 150 °C), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous TiO2 scaffolds, which require high-temperature sintering processes (> 400 °C), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

Graphical Abstract


Perovskite Charge-transporting layer Flexible electronics Solar cells Low-temperature process Interface engineering 



This work was conducted under the framework of Research and Development of the Korea Institute of Energy Research (B8-2425). This research was also supported by The Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010013200), the Technology Development Program to Solve Climate Changes (2017M1A2A2087353), and Research Program (2018R1A2B2006708) funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Republic of Korea.


  1. 1.
    Green, M., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014)CrossRefGoogle Scholar
  2. 2.
    Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  3. 3.
    Cho, H., Jeong, S.-H., Park, M.-H., Kim, Y.-H., Wolf, C., Lee, C.-L., Heo, J.H., Sadhanala, A., Myoung, N., Yoo, S., Im, S.H., Friend, R.H., Lee, T.-W.: Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222 (2015)CrossRefGoogle Scholar
  4. 4.
    Yuan, M., Quan, L.N., Comin, R., Walters, G., Sabatini, R., Voznyy, O., Hoogland, S., Zhao, Y., Beauregard, E.M., Kanjanaboos, P., Lu, Z., Kim, D.H., Sargent, E.H.: Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872 (2016)CrossRefGoogle Scholar
  5. 5.
    Dou, L., Yang, Y., You, J., Hong, Z., Chang, W.-H., Li, G., Yang, Y.: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014)CrossRefGoogle Scholar
  6. 6.
    Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014)CrossRefGoogle Scholar
  7. 7.
    Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014)CrossRefGoogle Scholar
  8. 8.
    Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., Sum, T.C.: Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344 (2013)CrossRefGoogle Scholar
  9. 9.
    Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013)CrossRefGoogle Scholar
  10. 10.
    Leijtens, T., Stranks, S.D., Eperon, G.E., Lindblad, R., Johansson, E.M.J., McPherson, I.J., Rensmo, H., Ball, J.M., Lee, M.M., Snaith, H.J.: Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano 8, 7147 (2014)CrossRefGoogle Scholar
  11. 11.
    Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584 (2014)CrossRefGoogle Scholar
  12. 12.
    D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)CrossRefGoogle Scholar
  13. 13.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  14. 14.
    Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012)CrossRefGoogle Scholar
  15. 15.
    Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013)CrossRefGoogle Scholar
  16. 16.
    Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014)CrossRefGoogle Scholar
  17. 17.
    Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015)CrossRefGoogle Scholar
  18. 18.
    National Renewable Energy Laboratory, Best Research-Cell Efficiencies Chart.
  19. 19.
    Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.I.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376 (2017)CrossRefGoogle Scholar
  20. 20.
    McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M., Snaith, H.J.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151 (2016)CrossRefGoogle Scholar
  21. 21.
    Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D.-Y., Vak, D.: Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241 (2015)CrossRefGoogle Scholar
  22. 22.
    Schmidt, T.M., Larsen-Olsen, T.T., Carlé, J.E., Angmo, D., Krebs, F.C.: Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015)CrossRefGoogle Scholar
  23. 23.
    Hodes, G., Cahen, D.: Photovoltaics: Perovskite cells roll forward. Nat. Photonics 8, 87 (2014)CrossRefGoogle Scholar
  24. 24.
    Di Giacomo, F., Fakharuddin, A., Josec, R., Brown, T.M.: Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9, 3007 (2016)CrossRefGoogle Scholar
  25. 25.
    Popoola, I.K., Gondal, M.A., Qahtan, T.F.: Recent progress in flexible perovskite solar cells: materials, mechanical tolerance and stability. Renew. Sustain. Energy Rev. 82, 3127 (2018)CrossRefGoogle Scholar
  26. 26.
    Susrutha, B., Giribabuab, L., Singh, S.P.: Recent advances in flexible perovskite solar cells. Chem. Commun. 51, 14696 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhou, Y., Game, O.S., Pang, S., Padture, N.P.: Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6, 4827 (2015)CrossRefGoogle Scholar
  28. 28.
    Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G.: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015)CrossRefGoogle Scholar
  29. 29.
    Chueh, C.-C., Lia, C.-Z., Jen, A.K.-Y.: Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8, 1160 (2015)CrossRefGoogle Scholar
  30. 30.
    Yang, G., Tao, H., Qin, P., Ke, W., Fang, G.: Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 4, 3970 (2016)CrossRefGoogle Scholar
  31. 31.
    Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., Nazeeruddin, M.K., Grätzel, M., Seok, S.I.: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013)CrossRefGoogle Scholar
  32. 32.
    Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014)CrossRefGoogle Scholar
  33. 33.
    Shi, J., Xu, X., Li, D., Meng, Q.: Interfaces in perovskite solar cells. Small 11, 2472 (2015)CrossRefGoogle Scholar
  34. 34.
    Koo, B., Jung, H., Park, M., Kim, J.-Y., Son, H.J., Cho, J., Ko, M.J.: Pyrite-based bi-functional layer for long-term stability and high-performance of organo-lead halide perovskite solar cells. Adv. Funct. Mater. 26, 5400 (2016)CrossRefGoogle Scholar
  35. 35.
    Jeong, I., Kim, H.J., Lee, B.-S., Son, H.J., Kim, J.Y., Lee, D.-K., Kim, D.-E., Lee, J., Ko, M.J.: Highly efficient perovskite solar cells based on mechanically durable molybdenum cathode. Nano Energy 17, 131 (2015)CrossRefGoogle Scholar
  36. 36.
    Vçlker, S.F., Collavini, S., Delgado, J.L.: Organic charge carriers for perovskite solar cells. ChemSusChem 8, 3012 (2015)CrossRefGoogle Scholar
  37. 37.
    Mali, S.S., Hong, C.K.: p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale 8, 10528 (2016)CrossRefGoogle Scholar
  38. 38.
    Nguyen, W.H., Bailie, C.D., Unger, E.L., McGehee, M.D.: Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136, 10996 (2014)CrossRefGoogle Scholar
  39. 39.
    Wang, Q.-K., Wang, R.-B., Shen, P.-F., Li, C., Li, Y.-Q., Liu, L.-J., Duhm, S., Tang, J.-X.: Energy level offsets at lead halide perovskite/organic hybrid interfaces and their impacts on charge separation. Adv. Mater. Interfaces 2, 1400528 (2015)CrossRefGoogle Scholar
  40. 40.
    Bae, S., Han, S.J., Shin, T.J., Jo, W.H.: Two different mechanisms of CH3NH3PbI3 film formation in one-step deposition and its effect on photovoltaic properties of OPV-type perovskite solar cells. J. Mater. Chem. 3, 23964 (2015)CrossRefGoogle Scholar
  41. 41.
    Li, Y., Zhao, Y., Chen, Q., Yang, Y., Liu, Y., Hong, Z., Liu, Z., Hsieh, Y.-T., Meng, L., Li, Y., Yang, Y.: Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 137, 15540 (2015)CrossRefGoogle Scholar
  42. 42.
    Momblona, C., Gil-Escrig, L., Bandiello, E., Hutter, E.M., Sessolo, M., Lederer, K., Blochwitz-Nimoth, J., Bolink, H.J.: Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9, 3456 (2016)CrossRefGoogle Scholar
  43. 43.
    Kim, B.J., Kim, D.H., Lee, Y.-Y., Shin, H.-W., Han, G.S., Hong, J.S., Mahmood, K., Ahn, T.K., Joo, Y.-C., Hong, K.S., Park, N.-G., Lee, S., Jung, H.S.: Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916 (2015)CrossRefGoogle Scholar
  44. 44.
    Yang, D., Yang, R., Zhang, J., Yang, Z., Liu, S., Li, C.: High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8, 3208 (2015)CrossRefGoogle Scholar
  45. 45.
    Jeong, I., Jung, H., Park, M., Suh Park, J., Son, H.J., Joo, J., Lee, J., Ko, M.J.: A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy 28, 380 (2016)CrossRefGoogle Scholar
  46. 46.
    Kumar, M.H., Yantara, N., Dharani, S., Graetzel, M., Mhaisalkar, S., Boix, P.P., Mathews, N.: Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089 (2013)CrossRefGoogle Scholar
  47. 47.
    Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2013)CrossRefGoogle Scholar
  48. 48.
    Park, M., Kim, J.-Y., Son, H.J., Lee, C.-H., Jang, S.S., Ko, M.J.: Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208 (2016)CrossRefGoogle Scholar
  49. 49.
    Shin, S.S., Yang, W.S., Noh, J.H., Suk, J.H., Jeon, N.J., Park, J.H., Kim, J.S., Seong, W.M., Seok, S.I.: High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100°C. Nat. Commun. 6, 7410 (2015)CrossRefGoogle Scholar
  50. 50.
    Shin, S.S., Yang, W.S., Yeom, E.J., Lee, S.J., Jeon, N.J., Joo, Y.-C., Park, I.J., Noh, J.H., Seok, S.I.: Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J. Phys. Chem. Lett. 7, 1845 (2016)CrossRefGoogle Scholar
  51. 51.
    Wang, K., Shia, Y., Gao, L., Chia, R., Shia, K., Guoa, B., Zhao, L., Ma, T.: W(Nb)Ox-based efficient flexible perovskite solar cells: from material optimization to working principle. Nano Energy 31, 424 (2017)CrossRefGoogle Scholar
  52. 52.
    Feng, J., Yang, Z., Yang, D., Ren, X., Zhu, X., Jin, Z., Zi, W., Wei, Q., Liu, S.: E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 36, 1 (2017)CrossRefGoogle Scholar
  53. 53.
    Yoon, H., Kang, S.M., Lee, J.-K., Choi, M.: Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9, 2262 (2016)CrossRefGoogle Scholar
  54. 54.
    Wang, Y.-C., Li, X., Zhu, L., Liu, X., Zhang, W., Fang, J.: Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer. Adv. Energy Mater. 7, 1701144 (2017)CrossRefGoogle Scholar
  55. 55.
    Jeng, J.-Y., Chiang, Y.-F., Lee, M.-H., Peng, S.-R., Guo, T.-F., Chen, P., Wen, T.-C.: CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727 (2013)CrossRefGoogle Scholar
  56. 56.
    Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J.: Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013)CrossRefGoogle Scholar
  57. 57.
    You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T.-B., Chen, C.-C., Lu, S., Liu, Y., Zhou, H., Yang, Y.: Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674 (2014)CrossRefGoogle Scholar
  58. 58.
    Lim, K.-G., Kim, H.-B., Jeong, J., Kim, H., Kim, J.Y., Lee, T.-W.: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26, 6461 (2014)CrossRefGoogle Scholar
  59. 59.
    Park, M., Kim, H.J., Jeong, I., Lee, J., Lee, H., Son, H.J., Kim, D.-E., Ko, M.J.: Mechanically recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of organic–inorganic perovskite. Adv. Energy Mater. 5, 1501406 (2015)CrossRefGoogle Scholar
  60. 60.
    Hu, X., Huang, Z., Zhou, X., Li, P., Wang, Y., Huang, Z., Su, M., Ren, W., Li, F., Li, M., Chen, Y., Song, Y.: Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 29, 1703236 (2017)CrossRefGoogle Scholar
  61. 61.
    Jo, J.W., Seo, M.-S., Park, M., Kim, J.-Y., Park, J.S., Han, I.K., Ahn, H., Jung, J.W., Sohn, B.-H., Ko, M.J., Son, H.J.: Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv. Funct. Mater. 26, 4464 (2016)CrossRefGoogle Scholar
  62. 62.
    Bi, C., Chen, B., Wei, H., DeLuca, S., Huang, J.: Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 29, 1605900 (2017)CrossRefGoogle Scholar
  63. 63.
    Yin, X., Chen, P., Que, M., Xing, Y., Que, W., Niu, C., Shao, J.: Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 10, 3630 (2016)CrossRefGoogle Scholar
  64. 64.
    Ye, F., Tang, W., Xie, F., Yin, M., He, J., Wang, Y., Chen, H., Qiang, Y., Yang, X., Han, L.: Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 29, 1701440 (2017)CrossRefGoogle Scholar
  65. 65.
    Najafi, M., Giacomo, F.D., Zhang, D., Shanmugam, S., Senes, A., Verhees, W., Hadipour, A., Galagan, Y., Aernouts, T., Veenstra, S., Andriessen, R.: Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small 14, 1702775 (2018)CrossRefGoogle Scholar
  66. 66.
    Wang, Q., Chueh, C.-C., Zhao, T., Cheng, J., Eslamian, M., Choy, W.C.H., Jen, A.K.-Y.: Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 10, 3794 (2017)CrossRefGoogle Scholar
  67. 67.
    He, Q., Yao, K., Wang, X., Xia, X., Leng, S., Li, F.: Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl. Mater. Interfaces 9, 41887 (2017)CrossRefGoogle Scholar
  68. 68.
    Wu, Y., Yang, X., Chen, H., Zhang, K., Qin, C., Liu, J., Peng, W., Islam, A., Bi, E., Ye, F., Yin, M., Zhang, P., Han, L.: Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7, 052301 (2014)CrossRefGoogle Scholar
  69. 69.
    Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.-P., Tress, W.R., Abate, A., Hagfeldt, A., Grätzel, M.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016)CrossRefGoogle Scholar
  70. 70.
    Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M.: Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016)CrossRefGoogle Scholar
  71. 71.
    Seo, M.-S., Jeong, I., Park, J.-S., Lee, J., Han, I.K., Lee, W.I., Son, H.J., Sohn, B.-H., Ko, M.J.: Vertically aligned nanostructured TiO2 photoelectrodes for high efficiency perovskite solar cells via a block copolymer template approach. Nanoscale 8, 11472 (2016)CrossRefGoogle Scholar
  72. 72.
    Jeong, I., Park, Y.H., Bae, S., Park, M., Jeong, H., Lee, P., Ko, M.J.: Solution-processed ultrathin TiO2 compact layer hybridized with mesoporous TiO2 for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 9, 36865 (2017)CrossRefGoogle Scholar
  73. 73.
    Son, D.-Y., Lee, J.-W., Choi, Y.J., Jang, I.-H., Lee, S., Yoo, P.J., Shin, H., Ahn, N., Choi, M., Kim, D., Park, N.-G.: Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016)CrossRefGoogle Scholar
  74. 74.
    Lu, H., Ma, Y., Gu, B., Tian, W., Li, L.: Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. J. Mater. Chem. A 3, 16445 (2015)CrossRefGoogle Scholar
  75. 75.
    Choi, J., Song, S., Hörantner, M.T., Snaith, H.J., Park, T.: Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 10, 6029 (2016)CrossRefGoogle Scholar
  76. 76.
    Chakravarthi, N., Gunasekar, K., Cho, W., Long, D.X., Kim, Y.-H., Song, C.E., Lee, J.-C., Facchetti, A., Song, M., Noh, Y.-Y., Jin, S.-H.: A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics. Energy Environ. Sci. 9, 2595 (2016)CrossRefGoogle Scholar
  77. 77.
    Azmi, R., Hadmojo, W.T., Sinaga, S., Lee, C.-L., Yoon, S.C., Jung, I.H., Jang, S.-Y.: Perovskite solar cells: high-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv. Energy Mater. 8, 1701683 (2018)CrossRefGoogle Scholar
  78. 78.
    Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., Wan, J., Yang, G., Yan, Y.: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730 (2015)CrossRefGoogle Scholar
  79. 79.
    Baena, J.P.C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsu, T., Giordano, F., Jacobsson, T.J., Kandada, A.R.S., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928 (2015)CrossRefGoogle Scholar
  80. 80.
    Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J.: Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016)CrossRefGoogle Scholar
  81. 81.
    Shin, S.S., Kim, D.W., Hwang, D., Suk, J.H., Oh, L.S., Han, B.S., Kim, D.H., Kim, J.S., Kim, D., Kim, J.Y., Hong, K.S.: Controlled interfacial electron dynamics in highly efficient Zn2SnO4-based dye-sensitized solar cells. ChemSusChem 7, 501 (2014)CrossRefGoogle Scholar
  82. 82.
    Young, D.L., Moutinho, H., Yan, Y., Coutts, T.J.: Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films. J. Appl. Phys. 92, 310 (2002)CrossRefGoogle Scholar
  83. 83.
    Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014)CrossRefGoogle Scholar
  84. 84.
    Shao, Y., Yuan, Y., Huang, J.: Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016)CrossRefGoogle Scholar
  85. 85.
    Wolff, C.M., Zu, F., Paulke, A., Toro, L.P., Koch, N., Neher, D.: Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017)CrossRefGoogle Scholar
  86. 86.
    Ahn, N., Kwak, K., Jang, M.S., Yoon, H., Lee, B.Y., Lee, J.-K., Pikhitsa, P.V., Byun, J., Choi, M.: Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016)CrossRefGoogle Scholar
  87. 87.
    Xu, X., Chen, Q., Hong, Z., Zhou, H., Liu, Z., Chang, W.-H., Sun, P., Chen, H., Marco, N.D., Wang, M., Yang, Y.: Working mechanism for flexible perovskite solar cells with simplified architecture. Nano Lett. 15, 6514 (2015)CrossRefGoogle Scholar
  88. 88.
    Kranthiraja, K., Gunasekar, K., Kim, H., Cho, A.-N., Park, N.-G., Kim, S., Kim, B.J., Nishikubo, R., Saeki, A., Song, M., Jin, S.-H.: High-performance long-term-stable dopant-free perovskite solar cells and additive-free organic solar cells by employing newly designed multirole π-conjugated polymers. Adv. Mater. 29, 1700183 (2017)CrossRefGoogle Scholar
  89. 89.
    Yana, W., Li, Y., Li, Y., Ye, S., Liu, Z., Wang, S., Bian, Z., Huang, C.: High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 16, 428 (2015)CrossRefGoogle Scholar
  90. 90.
    Huang, X., Wang, K., Yi, C., Meng, T., Gong, X.: Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer. Adv. Energy Mater. 6, 1501773 (2016)CrossRefGoogle Scholar
  91. 91.
    Liang, P.-W., Chueh, C.-C., Williams, S.T., Jen, A.K.-Y.: Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. 5, 1402321 (2015)CrossRefGoogle Scholar
  92. 92.
    Zuo, C., Ding, L.: Modified PEDOT layer makes a 1.52 V Voc for perovskite/PCBM solar cells. Adv. Energy Mater. 7, 1601193 (2017)CrossRefGoogle Scholar
  93. 93.
    Sin, D.H., Ko, H., Jo, S.B., Kim, M., Bae, G.Y., Cho, K.: Decoupling charge transfer and transport at polymeric hole transport layer in perovskite solar cells. ACS Appl. Mater. Interfaces 8, 6546 (2016)CrossRefGoogle Scholar
  94. 94.
    Nardes, A.M., Kemerink, M., Janssen, R.A.J., Bastiaansen, J.A.M., Kiggen, N.M.M., Langeveld, B.M.W., van Breemen, A.J.J.M., de Kok, M.M.: Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films. Adv. Mater. 19, 1196 (2007)CrossRefGoogle Scholar
  95. 95.
    Na, S.-I., Wang, G., Kim, S.-S., Kim, T.-W., Oh, S.-H., Yu, B.-K., Lee, T., Kim, D.-Y.: Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J. Mater. Chem. 19, 9045 (2009)CrossRefGoogle Scholar
  96. 96.
    Hou, F., Su, Z., Jin, F., Yan, X., Wang, L., Zhao, H., Zhu, J., Chu, B., Lia, W.: Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427 (2015)CrossRefGoogle Scholar
  97. 97.
    Hou, Y., Zhang, H., Chen, W., Chen, S., Quiroz, C.O.R., Azimi, H., Osvet, A., Matt, G.J., Zeira, E., Seuring, J., Kausch-Busies, N., Lövenich, W., Brabec, C.J.: Inverted, environmentally stable perovskite solar cell with a novel low-cost and water-free PEDOT hole-extraction layer. Adv. Energy Mater. 5, 1500543 (2015)CrossRefGoogle Scholar
  98. 98.
    Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., Hsu, Y.-J.: Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 24, 4107 (2014)CrossRefGoogle Scholar
  99. 99.
    Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., Yang, S.: High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571 (2014)Google Scholar
  100. 100.
    Kim, J.H., Liang, P.W., Williams, S.T., Cho, N., Chueh, C.C., Glaz, M.S., Ginger, D.S., Jen, A.K.-Y.: High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695 (2015)CrossRefGoogle Scholar
  101. 101.
    Jung, J.W., Chueh, C.-C., Jen, A.K.-Y., Low-Temperature, A.: Solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27, 7874 (2015)CrossRefGoogle Scholar
  102. 102.
    Park, J.H., Seo, J., Park, S., Shin, S.S., Kim, Y.C., Jeon, N.J., Shin, H.-W., Ahn, T.K., Noh, J.H., Yoon, S.C., Hwang, C.S., Seok, S.I.: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013 (2015)CrossRefGoogle Scholar
  103. 103.
    Jokar, E., Huang, Z.Y., Narra, S., Wang, C.-Y., Kattoor, V., Chung, C.-C., Diau, E.W.-G.: Anomalous charge-extraction behavior for graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Adv. Energy Mater. 8, 1701640 (2018)CrossRefGoogle Scholar
  104. 104.
    Kang, J.S., Kim, J.-Y., Yoon, J., Kim, J., Yang, J., Chung, D.Y., Kim, M., Jeong, H., Son, Y.J., Kim, B.G., Jeong, J., Hyeon, T., Choi, M., Ko, M.J., Sung, Y.-E.: Room-temperature vapor deposition of cobalt nitride nanofilms for mesoscopic and perovskite solar cells. Adv. Energy Mater. 8, 1703114 (2018)CrossRefGoogle Scholar
  105. 105.
    Zhang, Y., Hu, X., Chen, L., Huang, Z., Fu, Q., Liu, Y., Zhang, L., Chen, Y.: Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells. Org. Electron. 30, 281 (2016)CrossRefGoogle Scholar
  106. 106.
    Bi, D., Yi, C., Luo, J., Décoppet, J.-D., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A., Grätzel, M.: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016)CrossRefGoogle Scholar
  107. 107.
    Guo, Y., Shoyama, K., Sato, W., Nakamura, E.: Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells. Adv. Energy Mater. 6, 1502317 (2016)CrossRefGoogle Scholar
  108. 108.
    Wang, X., Lia, Z., Xu, W., Kulkarni, S.A., Batabyal, S.K., Zhang, S., Cao, A., Wong, L.H.: TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728 (2015)CrossRefGoogle Scholar
  109. 109.
    Nejand, B.A., Nazari, P., Gharibzadeh, S., Ahmadi, V., Moshaii, A.: All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem. Commun. 53, 747 (2017)CrossRefGoogle Scholar
  110. 110.
    Qiu, L., He, S., Yang, J., Deng, J., Peng, H.: Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 12, 2419 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Energy and Materials EngineeringDongguk University, SeoulSeoulRepublic of Korea
  2. 2.Department of Chemical EngineeringHanyang UniversitySeoulRepublic of Korea
  3. 3.Photovoltaics LaboratoryKorea Institute of Energy Research (KIER)DaejeonRepublic of Korea

Personalised recommendations