Electronic Materials Letters

, Volume 14, Issue 5, pp 574–580 | Cite as

Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon

  • Lihui Song
  • Jingjing Lou
  • Jiayi Fu
  • Zhenguo Ji


Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.


Dislocation Hydrogen passivation Charge states Silicon solar cell 



The authors would like to thank National Natural Science Foundation of China (Nos. 51602085) and Hangzhou Dianzi University (ZX150204307002/016) for the research funding. The authors declare that they have no conflict of interest.


  1. 1.
    Imaizumi, M., Ito, T., Yamaguchi, M., Kaneko, K.: Effect of grain size and dislocation density on the performance of thin film polycrystalline silicon solar cells. J. Appl. Phys. 81, 7635–7640 (1997)CrossRefGoogle Scholar
  2. 2.
    Guo, J.-H., Cousins, P.J., Cotter, J.E.: Investigations of parasitic shunt resistance in n-type buried contact solar cells. Prog. Photovolt. Res. Appl. 14, 95–105 (2006)CrossRefGoogle Scholar
  3. 3.
    Benamara, M., Rocher, A., Sopéna, P., Claverie, A., Laporte, A., Sarrabayrouse, G., Lescouzères, L., Peyre-Lavigne, A.: Structural and electrical investigations of silicon wafer bonding interfaces. Mater. Sci. Eng. B 42, 164–167 (1996)CrossRefGoogle Scholar
  4. 4.
    Kveder, V., Kittler, M., Schröter, W.: Recombination activity of contaminated dislocations in silicon: a model describing electron-beam-induced current contrast behavior. Phys. Rev. B 63, 115208 (2001)CrossRefGoogle Scholar
  5. 5.
    Sopori, B.: Silicon solar-cell processing for minimizing the influence of impurities and defects. J. Electron. Mater. 31, 972–980 (2002)CrossRefGoogle Scholar
  6. 6.
    Bertoni, M.I., Hudelson, S., Newman, B.K., Fenning, D.P., Dekkers, H.F.W., Cornagliotti, E., Zuschlag, A., Micard, G., Hahn, G., Coletti, G.: Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells. Prog. Photovolt. Res. Appl. 19, 187–191 (2011)CrossRefGoogle Scholar
  7. 7.
    Dubé, C., Hanoka, J.I.: Hydrogen passivation of dislocations in silicon. Appl. Phys. Lett. 45, 1135–1137 (1984)CrossRefGoogle Scholar
  8. 8.
    Martinuzzi, S., Périchaud, I., Warchol, F.: Hydrogen passivation of defects in multicrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 80, 343–353 (2003)CrossRefGoogle Scholar
  9. 9.
    Song, L.: Electric field-enhanced hydrogenation. Appl. Phys. A 122, 930 (2016)CrossRefGoogle Scholar
  10. 10.
    Divigalpitiya, W.M.R., Morrison, S.R., Vercruysse, G., Praet, A., Gomes, W.P.: Hydrogen passivation of dislocations in silicon. Sol. Energy Mater. 15, 141–151 (1987)CrossRefGoogle Scholar
  11. 11.
    Weronek, K., Weber, J., Queisser, H.J.: Hydrogen passivation of the dislocation-related D-band luminescence in silicon. Phys. Status Solidi A 137, 543–548 (1993)CrossRefGoogle Scholar
  12. 12.
    Hallam, B.J., Hamer, P.G., Wang, S., Song, L., Nampalli, N., Abbott, M.D., Chan, C.E., Lu, D., Wenham, A.M., Mai, L.: Advanced hydrogenation of dislocation clusters and boron-oxygen defects in silicon solar cells. Energy Procedia 77, 799–809 (2015)CrossRefGoogle Scholar
  13. 13.
    Wenham, A., Song, L., Abbott, M., Zafirovska, I., Wang, S., Hallam, B., Chan, C., Barnett, A., Wenham, S.: Defect passivation on cast-mono crystalline screen-printed cells. Front. Energy 11, 60–66 (2016)CrossRefGoogle Scholar
  14. 14.
    Song, L., Wenham, A., Wang, S., Hamer, P., Ahmmed, M.S., Hallam, B., Mai, L., Abbott, M., Hawkes, E.R., Chong, C., Wenham, S.: Laser enhanced hydrogen passivation of silicon wafers. Int. J. Photoenergy 2015, 193892 (2015)CrossRefGoogle Scholar
  15. 15.
    Song, L., Zheng, X., Fu, J., Ji, Z.: Controlled cooling process for efficient hydrogenation. J. Alloys Compd. 698, 892–897 (2017)CrossRefGoogle Scholar
  16. 16.
    Song, L., Xie, M., Yu, X., Yang, D.: Characterization of silicon surface states at clean and copper contaminated condition via transient capacitance measurement. Appl. Phys. Lett. 111, 152103 (2017)CrossRefGoogle Scholar
  17. 17.
    Song, L., Wenham, A., Wenham, S.: Low temperature diffusion and its impact on hydrogenation. Sol. Energy Mater. Sol. Cells 149, 221–225 (2016)CrossRefGoogle Scholar
  18. 18.
    Fertig, F., Broisch, J., Biro, D., Rein, S.: Stability of the regeneration of the boron–oxygen complex in silicon solar cells during module certification. Sol. Energy Mater. Sol. Cells 121, 157–162 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhu, J., Johnson, N.M., Herring, C.: Negative-charge state of hydrogen in silicon. Phys. Rev. B 41, 12354–12357 (1990)CrossRefGoogle Scholar
  20. 20.
    Hamer, P., Hallam, B., Wenham, S., Abbott, M.: Manipulation of hydrogen charge states for passivation of P-type wafers in photovoltaics. IEEE J. Photovolt. 4, 1252–1260 (2014)CrossRefGoogle Scholar
  21. 21.
    Hamer, P., Wang, S., Hallam, B., Wenham, S., Chong, C.M., Wenham, A., Abbott, M.: Laser illumination for manipulation of hydrogen charge states in silicon solar cells. Phys. Status Solidi (RRL) Rapid Res. Lett. 9, 111–114 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations