Electronic Materials Letters

, Volume 14, Issue 2, pp 155–160 | Cite as

Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

  • Gwang Su Shin
  • Won-Gyu Choi
  • Sungjae Na
  • Fatma Pinar Gökdemir
  • Taeho Moon


Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in pin type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

Graphical Abstract


CH3NH3PbI3 Lead acetate Hot casting Air processing Planar heterojunction solar cells 



The present research was conducted by the research fund of Dankook University in 2015.


  1. 1.
    Snaith, H.J.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623 (2013)CrossRefGoogle Scholar
  2. 2.
    Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Sci. 338, 643 (2012)CrossRefGoogle Scholar
  3. 3.
    Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Sci. 345, 542 (2014)CrossRefGoogle Scholar
  4. 4.
    Shin, G.S., Choi, W.G., Na, S., Ryu, S.O., Moon, T.: Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017)CrossRefGoogle Scholar
  5. 5.
    Lee, B., Lee, S., Cho, D., Kim, J., Hwang, T., Kim, K.H., Hong, S., Moon, T., Park, B.: Evaluating the optoelectronic quality of hybrid perovskites by conductive AFM with noise spectroscopy. ACS Appl. Mater. Interfaces 8, 30985 (2016)CrossRefGoogle Scholar
  6. 6.
    Rehman, A.U., Lee, S.H., Lee, S.H.: Crystalline silicon thin-film solar cells on ceramic substrates. Electron. Mater. Lett. 11, 295 (2015)CrossRefGoogle Scholar
  7. 7.
    Grätzel, M.: The rise of highly efficient and stable perovskite solar cells. Acc. Chem. Res. 50, 487 (2017)CrossRefGoogle Scholar
  8. 8.
    Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.S., Chang, J.A., Lee, Y.H., Kim, H.J., Sarkar, A., Nazeeruddin, M.K., Grätzel, M., Seok, S.I.: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486 (2013)CrossRefGoogle Scholar
  9. 9.
    Fan, P., Gu, D., Liang, G.X., Luo, J.T., Chen, J.L., Zheng, Z.H., Zhang, D.P.: High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci. Rep. 6, 29910 (2016)CrossRefGoogle Scholar
  10. 10.
    Ji, L., Zhang, T., Wang, Y., Zhang, P., Liu, D., Chen, Z., Li, S.: Realizing full coverage of stable perovskite film by modified anti-solvent process. Nanoscale Res. Lett. 12, 367 (2017)CrossRefGoogle Scholar
  11. 11.
    Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013)CrossRefGoogle Scholar
  12. 12.
    Nam, J.J., Jun, H.N., Kim, Y.C., Yang, W.S., Ryu, S.C., Seok, S.I.: Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014)CrossRefGoogle Scholar
  13. 13.
    Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503 (2014)CrossRefGoogle Scholar
  14. 14.
    Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M., Grätzel, M., Nazeeruddin, M.K., Bolink, H.J.: Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128 (2013)CrossRefGoogle Scholar
  15. 15.
    Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013)CrossRefGoogle Scholar
  16. 16.
    Momblona, C., Malinkiewicz, O., Roldán-Carmona, C., Soriano, A., Gil-Escrig, L., Bandiello, E., Scheepers, M., Edri, E., Bolink, H.J.: Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Mater. 2, 081504 (2014)CrossRefGoogle Scholar
  17. 17.
    Chen, C.W., Kang, H.W., Hsiao, S.Y., Yang, P.F., Chiang, K.M., Lin, H.W.: Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv. Mater. 26, 6647 (2014)CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Chen, T., Dai, L.: Layer-by-layer growth of CH3NH3PbI(3-x)Clx for highly efficient planar heterojunction perovskite solar cells. Adv. Mater. 27, 1053 (2015)CrossRefGoogle Scholar
  19. 19.
    Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106 (2015)CrossRefGoogle Scholar
  20. 20.
    Ono, L.K., Raga, S.R., Remeika, M., Winchester, A.J., Gabe, A., Qi, Y.: Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions. J. Mater. Chem. A 3, 15451 (2015)CrossRefGoogle Scholar
  21. 21.
    Leyden, M.R., Lee, M.V., Raga, S.R., Qi, Y.: Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J. Mater. Chem. A 3, 16097 (2015)CrossRefGoogle Scholar
  22. 22.
    Zhang, W., Saliba, M., Moore, D.T., Pathak, S.K., Hörantner, M.T., Stergiopoulos, T., Stranks, S.D., Eperon, G.E., Alexander-Webber, J.A., Abate, A., Sadhanala, A., Yao, S., Chen, Y., Friend, R.H., Estroff, L.A., Wiesner, U., Snaith, H.J.: Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015)CrossRefGoogle Scholar
  23. 23.
    Qing, J., Chandran, H.T., Xue, H.T., Guan, Z.Q., Liu, T.L., Tsang, S.W., Lo, M.F., Lee, C.S.: Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature. Org. Electron. 27, 12 (2015)CrossRefGoogle Scholar
  24. 24.
    Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., Gustafsson, M.V., Trinh, M.T., Jin, S., Zhu, X.Y.: Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636 (2015)CrossRefGoogle Scholar
  25. 25.
    Forgács, D., Sessolo, M., Bolink, H.J.: Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis. J. Mater. Chem. A 3, 14121 (2015)CrossRefGoogle Scholar
  26. 26.
    Fu, Y., Meng, F., Rowley, M.B., Thompson, B.J., Shearer, M.J., Ma, D., Hamers, R.J., Wright, J.C., Jin, S.: Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J. Am. Chem. Soc. 137, 5810 (2015)CrossRefGoogle Scholar
  27. 27.
    Moore, D.T., Sai, H., Tan, K.W., Smilgies, D.M., Zhang, W., Snaith, H.J., Wiesner, U., Estroff, L.A.: Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350 (2015)CrossRefGoogle Scholar
  28. 28.
    Zhang, W., Pathak, S., Sakai, N., Stergiopoulos, T., Nayak, P.K., Noel, N.K., Haghighirad, A.A., Burlakov, V.M., deQuilettes, D.W., Sadhanala, A., Li, W., Wang, L., Ginger, D.S., Friend, R.H., Snaith, H.J.: Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015)CrossRefGoogle Scholar
  29. 29.
    Qing, J., Chandran, H.T., Cheng, Y.H., Liu, X.K., Li, H.W., Tsang, S.W., Lo, M.F., Lee, C.S.: Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces 7, 23110 (2015)CrossRefGoogle Scholar
  30. 30.
    Egger, D.A., Edri, E., Cohen, D., Hodes, G.: Perovskite solar cells: Do we know what we do not know? J. Phys. Chem. Lett. 6, 279 (2015)CrossRefGoogle Scholar
  31. 31.
    Zhao, L., Luo, D., Wu, J., Hu, Q., Zhang, W., Chen, K., Liu, T., Liu, Y., Zhang, Y., Liu, F., Russell, T.P., Snaith, H.J., Zhu, R., Gong, Q.: High-performance inverted planar heterojunction perovskite solar cells based on lead acetate precursor with efficiency exceeding 18%. Adv. Funct. Mater. 26, 3508 (2016)CrossRefGoogle Scholar
  32. 32.
    Li, C., Guo, Q., Qiao, W., Chen, Q., Ma, S., Pan, X., Wang, F., Yao, J., Zhang, C., Xiao, M., Dai, S., Tan, Z.: Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Org. Electron. 33, 194 (2016)CrossRefGoogle Scholar
  33. 33.
    Sima, M., Vasile, E., Sima, M.: Lead acetate film as precursor for two-step deposition of CH3NH3PbI3. Mater. Res. Bull. 89, 89 (2017)CrossRefGoogle Scholar
  34. 34.
    Gao, H., Bao, C., Li, F., Yu, T., Yang, J., Zhu, W., Zhou, X., Fu, G., Zou, Z.: Nucleation and crystal growth of organic-inorganic lead halide perovskites under different relative humidity. ACS Appl. Mater. Inter. 7, 9110 (2015)CrossRefGoogle Scholar
  35. 35.
    Zhu, Z., Liu, C., Xu, J., Jiang, Q., Shi, H., Liu, E.: Improving the electrical conductivity of PEDOT: PSS films by binary secondary doping. Electron. Mater. Lett. 12, 54 (2016)CrossRefGoogle Scholar
  36. 36.
    Oh, I.S., Ji, C.H., Oh, S.Y.: Effects of ytterbium on electrical and optical properties of BCP/Ag/WO3 transparent electrode based organic photovoltaic cells. Electron. Mater. Lett. 12, 156 (2016)CrossRefGoogle Scholar
  37. 37.
    Zheng, Y.C., Yang, S., Chen, X., Chen, Y., Hou, Y., Yang, H.C.: Thermal-induced volmer–weber growth behavior for planar heterojunction perovskites solar cells. Chem. Mater. 27, 5116 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringDankook UniversityCheonanKorea
  2. 2.Department of PhysicsYildiz Technical UniversityIstanbulTurkey

Personalised recommendations