Electronic Materials Letters

, Volume 14, Issue 2, pp 133–138 | Cite as

Graphene FETs Based on High Resolution Nanoribbons for HF Low Power Applications

  • David Mele
  • Sarah Mehdhbi
  • Dalal Fadil
  • Wei Wei
  • Abdelkarim Ouerghi
  • Sylvie Lepilliet
  • Henri Happy
  • Emiliano Pallecchi


In this paper we present high frequency field effect transistors based on graphene nanoribbons arrays (GNRFETs). The nanoribbons serve as a channel for the transistors and are fabricated with a process based on e-beam lithography and dry etching of high mobility hydrogen intercalated epitaxial graphene. The widths of the nanoribbons vary from 50 to 20 nm, less than half those measured in previous reports for GNRFETs. Hall measurements reveal that the devices are p-doped, with mobility on the order of 2300 cm2/Vs. From DC characteristics, we find that the maximum ratio IMAX/IMIN is 5 obtained at 50 nm ribbons width. The IV characteristics of the GNRFETs are slightly non-linear at high bias without a full saturation. Therefore, despite the aggressive scaling of the graphene nanoribbon width, a bandgap is still not observed in our measurements. The high frequency performances of our GNRFETs are already significant at low bias. At 300 mV drain source voltage, the highest intrinsic (extrinsic) cut-off frequency ft reaches 82 (18) GHz and the extrinsic maximum oscillation frequency fmax is 20 GHz, which is promising for low power applications.


Nanoribbons Graphene Radio-frequency characterization Field effect transistor Low power 



This work was supported by the French Contract No. ANR-2010-BLAN-0304-01-MIGRAQUEL (Agence Nationale de la Recherche). We thank M. Moez and V. Avramovic for the RF characterization. The authors gratefully acknowledge financial support from EU FP7-ICT-2013-FET-F GRAPHENE Flagship Project (No. 604391). This work was also partly supported by the French RENATECH network.


  1. 1.
    Novoselov, K.S., Fal′ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)CrossRefGoogle Scholar
  2. 2.
    Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008)CrossRefGoogle Scholar
  3. 3.
    Montanaro, A., Mzali, S., Mazellier, J., Bezencenet, O., Larat, C., Molin, S., Legagneux, P.: 30 GHz optoelectronic mixing in CVD graphene. Nano Lett. 16, 2988–2993 (2015)CrossRefGoogle Scholar
  4. 4.
    Lemme, M.C.: Current status of graphene transistors. Solid State Phenom. 156, 499–509 (2009)CrossRefGoogle Scholar
  5. 5.
    Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)CrossRefGoogle Scholar
  6. 6.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene.  Solid State Commun. 146, 351–355 (2008)CrossRefGoogle Scholar
  7. 7.
    Zandiatashbar, A., Lee, G.-H., An, S.J., Lee, S., Mathew, N., Terrones, M., Hayashi, T., Picu, C.R., Hone, J., Koratkar, N.: Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014)CrossRefGoogle Scholar
  8. 8.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  9. 9.
    Cheng, R., Bai, J., Liao, L., Zhou, H., Chen, Y., Liu, L., Lin, Y., Jiang, S., Huang, Y.: High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl. Acad. Sci. USA 109, 11588–11592 (2012)CrossRefGoogle Scholar
  10. 10.
    Guo, Z., Dong, R., Chakraborty, P.S., Lourenco, N., Palmer, J., Hu, Y., Ruan, M., Hankinson, J., Kunc, J., Cressler, J.D., Berger, C., De Heer, W.A.: Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 13, 942–947 (2013)CrossRefGoogle Scholar
  11. 11.
    Guerriero, E., Pedrinazzi, P., Mansouri, A., Habibpour, O., Winters, M., Rorsman, N., Behnam, A., Carrion, E.A., Pesquera, A., Centeno, A., Zurutuza, A., Pop, E., Zirath, H., Sordan, R.: High-gain graphene transistors with a thin AlOx top-gate oxide. Sci. Rep. 7, 2419 (2017)CrossRefGoogle Scholar
  12. 12.
    Wu, Y., Jenkins, K.A., Valdes-Garcia, A., Farmer, D.B., Zhu, Y., Bol, A.A., Dimitrakopoulos, C., Zhu, W., Xia, F., Avouris, P., Lin, Y.-M.: State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012)CrossRefGoogle Scholar
  13. 13.
    Wu, Y., Zou, X., Sun, M., Cao, Z., Wang, X., Huo, S., Zhou, J., Yang, Y., Yu, X., Kong, Y., Yu, G., Liao, L., Chen, T.: 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. Appl, A.C.S.: Mater. Interfaces 8, 25645–25649 (2016)CrossRefGoogle Scholar
  14. 14.
    Wei, W., Pallecchi, E., Haque, S., Borini, S., Avramovic, V., Centeno, A., Amaia, Z., Happy, H.: Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. Nanoscale 8, 14097–14103 (2016)CrossRefGoogle Scholar
  15. 15.
    Yeh, C.-H., Lain, Y.-W., Chiu, Y.-C., Liao, C.-H., Moyano, D.R., Hsu, S.S.H., Chiu, P.-W.: Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 8, 7663–7670 (2014)CrossRefGoogle Scholar
  16. 16.
    Lee, J., Ha, T.-J., Li, H., Parrish, K.N., Holt, M., Dodabalapur, A., Ruoff, R.S., Akinwande, D.: 25 GHz embedded-gate graphene transistors with high-K dielectrics on extremely flexible plastic sheets. ACS Nano 7, 7744–7750 (2013)CrossRefGoogle Scholar
  17. 17.
    Park, S., Yun, J.M., Maiti, U.N., Moon, H.-S., Jin, H.M., Kim, S.O.: Device-oriented graphene nanopatterning by mussel-inspired directed block copolymer self-assembly. Nanotechnology 25, 014008 (2014)CrossRefGoogle Scholar
  18. 18.
    Lim, J., Maiti, U.N., Kim, N.-Y., Narayan, R., Lee, W.J., Choi, D.S., Oh, Y., Lee, J.M., Lee, G.Y., Kang, S.H., Kim, H., Kim, Y.-H., Kim, S.O.: Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures. Nat. Commun. 7, 10364 (2016)CrossRefGoogle Scholar
  19. 19.
    Wang, X., Dai, H.: Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661–665 (2010)CrossRefGoogle Scholar
  20. 20.
    Han, M.Y., Ozyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)CrossRefGoogle Scholar
  21. 21.
    Meng, N., Fernandez, J.F., Vignaud, D., Dambrine, G., Happy, H.: Fabrication and characterization of an epitaxial graphene nanoribbon-based field-effect transistor. Trans, I.E.E.E. Electron Devices 58, 1594–1596 (2011)CrossRefGoogle Scholar
  22. 22.
    Pallecchi, E., Lafont, F., Cavaliere, V., Schopfer, F., Mailly, D., Poirier, W., Ouerghi, A.: High electron mobility in epitaxial graphene on 4H-SiC(0001) via post-growth annealing under hydrogen. Sci. Rep. 4, 4558 (2014)CrossRefGoogle Scholar
  23. 23.
    Gahoi, A., Wagner, S., Bablich, A., Kataria, S., Passi, V., Lemme, M.C.: Contact resistance study of various metal electrodes with CVD graphene. Solid State Electron. 125, 234–239 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Institute of Electronics, Microelectronics and Nanotechnology, CNRS UMR8520Villeneuve d’AscqFrance
  2. 2.Center for Nanoscience and NanotechnologyMarcoussisFrance

Personalised recommendations