Electronic Materials Letters

, Volume 14, Issue 2, pp 113–123 | Cite as

Piezoelectric Flexible LCP–PZT Composites for Sensor Applications at Elevated Temperatures

  • Jarkko Tolvanen
  • Jari Hannu
  • Jari Juuti
  • Heli Jantunen


In this paper fabrication of piezoelectric ceramic–polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of  > 50 cm, achieved excellent bendability with minimum bending radius of ~ 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37–50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

Graphical Abstract


Extruder Flexible Piezoelectric Pressure 3D printing 



Financial support of the Hybrid materials project (2105/31/2013) of Tekes program of the Finnish Metals and Engineering Competence Cluster (FIMECC Ltd) is gratefully acknowledged. Author J.J. acknowledges the funding of the Academy of Finland (project numbers 267573). Author JT was supported by Riitta and Jorma J. Takanen Foundation, Walter Ahlström Foundation, Tauno Tönning Foundation, and Finnish Foundation for Technology Promotion. Also, authors would like to acknowledgment Dr. Maciej Sobocinski for introducing the filament extruding technique and Dr. Mikko Nelo for helping to find possible solutions to fabricate filaments with higher PZT loadings.


  1. 1.
    Wang, Xin, Jiang, Man, Zhou, Zuowan, Gou, Jihue, Hui, David: 3D printing of polymer matrix composites: a review and prospective. Compos. Part B 110, 442–458 (2017). CrossRefGoogle Scholar
  2. 2.
    Leigh, S.J., Bradley, R.J., Purssell, C.P., Billson, D.R., Hutchins, D.A.: a simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7(11), e49365 (2012)CrossRefGoogle Scholar
  3. 3.
    Isokov, D.V., Lei, Q., Castles, F., Stevens, C.J., Grovenor, C.R.M., Grant, P.S.: 3D printed anisotropic dielectric composite with meta-material features. Mater. Des. 93, 423–430 (2016). CrossRefGoogle Scholar
  4. 4.
    Carriro, J.D., Traeden, N.W., Aureli, M., Leang, K.K.: Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater. Struct. 24, 125021 (2015). CrossRefGoogle Scholar
  5. 5.
    Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., Ozcan, S.: Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos. Sci. Technol 105, 144–150 (2014). CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Castles, F., Grant, P.S.: 3D printing of NiZn ferrite/ABS magnetic composites for electromagnetic devices. Mater. Res. Soc. Symp. Proc. (2015). Google Scholar
  7. 7.
    Castles, F., Isakov, D., Lui, A., Lei, Q., Dancer, C.E.J., Wang, Y., Januruding, J.M., Speller, S.C., Grovenor, C.R.M., Grant, P.S.: Microwave dielectric characterization of 3D-printed BaTiO3/ABS polymer composites. Sci. Rep. 6, 22714 (2016). CrossRefGoogle Scholar
  8. 8.
    Castro, J., Rojas, E., Ross, A., Weller, T., Wang, J.: High-k and low-loss thermoplastic composites for fused deposition modeling and their application to 3D-Printed Ku-band antennas, microwave symposium. IEEE MTT-S Int (2016). Google Scholar
  9. 9.
    Ferreira, A., Ferreira, F., Paiva, C.: Textile sensor applications with composite monofilaments or polymer/carbon nanotubes. Adv. Sci. Technol. 80, 65–70 (2012). CrossRefGoogle Scholar
  10. 10.
    Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.-K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., Hirona, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016). CrossRefGoogle Scholar
  11. 11.
    Kim, Kanguk, Zhu, Wei, Xin, Qu, Aaronson, Chase, McCall, William R., Chen, Shaochen, Sirbuly, Donald J.: 3D optical printing of piezoelectric nanoparticle—polymer composite materials. ACS Nano 8(10), 9799–9806 (2014). CrossRefGoogle Scholar
  12. 12.
    Jain, A., Prashanth, K.J., Sharma, A.K., Jain, A., Rashmi, P.N.: Dielectric and piezoelectric properties of PVDF/PZT Composites: a review. Polym. Eng. Sci. 55(7), 1589–1616 (2015). CrossRefGoogle Scholar
  13. 13.
    Volkan, K., Ibrahim, Ç., Timucin, M.: Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceram. Int. 37(4), 1265–1275 (2011). CrossRefGoogle Scholar
  14. 14.
    Kechiche, M.B., Bauer, F., Harzallah, O., Drean, J.-Y.: Development of piezoelectric coaxial filament sensors P(VDF-TrFE)/copper for textile structure instrumentation. Sens. Actuators A 204, 124–130 (2013). CrossRefGoogle Scholar
  15. 15.
    Martins, R.S., Goncalves, R., Azevedo, T., Rocha, J.G., Nóbrega, J.M., Carvalho, H., Lanceros-Mendez, S.: Piezoelectric coaxial filament produced by coextrusion of poly(vinylidene fluoride) and electrically conductive inner and outer layers. J. Appl. Polym. Sci. (2014). Google Scholar
  16. 16.
    Bayramol, D.V.: Effects of tourmaline on the voltage response of PVDF filaments. Ind. Text. 68, 47–53 (2017)Google Scholar
  17. 17.
    Porter, D., Hoang, T., Berfield, T.: Effects of in situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit. Manuf. 13, 81–92 (2017)CrossRefGoogle Scholar
  18. 18.
    Ferroperm: High Quality Components and Materials for the Electronic Industry.
  19. 19.
    Elmore, T.: Instruction and Assembly Manual for Filastruder.
  20. 20.
    Tolvanen, J., Hannu, J., Nelo, M., Juuti, J., Jantunen, H.: Dielectric properties of novel polyurethane-PZT-graphite foam composites. Smart Mater. Struct. 25, 095039 (2016)CrossRefGoogle Scholar
  21. 21.
    Sharma, N.D., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55(11), 2328–2350 (2007). CrossRefGoogle Scholar
  22. 22.
    Chu, B., Salem, D.R.: Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett. 101, 103905 (2012). CrossRefGoogle Scholar
  23. 23.
    Jaitanong, N., Yimnirun, R., Zeng, H.R., Li, G.R., Yin, Q.R., Chaipanich, A.: Piezoelectric properties of cement based PVDF/PZT composites. Mater. Lett. 130, 146–149 (2014)CrossRefGoogle Scholar
  24. 24.
    Li, Z., Gong, H., Zhang, Y.: Fabrication and piezoelectricity of 0-3 cement based composite with nano-PZT powder. Curr. Appl. Phys. 9, 588–591 (2009)CrossRefGoogle Scholar
  25. 25.
    Chaipanich, A.: Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites. Curr. Appl. Phys. 7, 574–577 (2007)CrossRefGoogle Scholar
  26. 26.
    Guan, X., Zhang, Y., Li, H., Ou, J.: PZT/PVDF composites doped with carbon nanotubes. Sens. Actuator A-Phys. 194, 228–231 (2013)CrossRefGoogle Scholar
  27. 27.
    Babu, I., de With, G.: Highly flexible piezoelectric 0-3 PZT-PDMS composites with high filler content. Compos. Sci. Technol. 91, 91–97 (2014)CrossRefGoogle Scholar
  28. 28.
    Kirkpatrick, M., Tarbutton, J., Le, T., Lee, C.: Characterization of 3D printed piezoelectric sensors: determination of d33 piezoelectric coefficient for 3D printed polyvinylidene fluoride sensors. Sensors (2016). Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Microelectronics Research UnitUniversity of OuluOuluFinland

Personalised recommendations