Skip to main content
Log in

The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We have investigated the low temperature (LT) growth of GeSn–Ge–Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240–360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khurelbaatar, Z., Kil, Y.-H., Kim, T.S., Shim, K.-H., Hong, H., Choi, C.-J.: Optoelectronic characterization of infrared photodetector fabricated on Ge-on-Si substrate. J. Nanosci. Nanotechnol. 15, 1 (2015)

    Article  Google Scholar 

  2. Moontragoon, P., Ikonić, Z., Harrison, P.: Band structure calculation of Si–Ge–Sn alloys: Achieving direct band gap materials. Semicond. Sci. Technol. 22, 742 (2007)

    Article  Google Scholar 

  3. Thurmond, C.D., Trumbore, F.A., Kowalchik, M.: Germanium solidus curves. J. Chem. Phys. 25, 799 (1956)

    Article  Google Scholar 

  4. Lieten, R.R., Seo, J.W., Decoster, S., Vantomme, A., Peters, S., Bustillo, K.C., Haller, E.E., Menghini, M., Locquet, J.-P.: Tensile strained GeSn on Si by solid phase epitaxy. Appl. Phy. Lett. 102, 052106 (2013)

    Article  Google Scholar 

  5. Sadoh, T., Ooato, A., Park, J.-H., Miyao, M.: High Sn-concentration (~ 8%) GeSn by low-temperature (~ 150 °C) solid-phase epitaxy of a-GeSn/c-Ge. Thin Solid Films 602, 20 (2016)

    Article  Google Scholar 

  6. Werner, J., Oehme, M., Schmid, M., Kaschel, M., Schirmer, A., Kasper, E., Schulze, J.: Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl. Phy. Lett. 98, 061108 (2011)

    Article  Google Scholar 

  7. Gupta, J.P., Bhargava, N., Kim, S., Adam, T., Kolodzey, J.: Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy. Appl. Phy. Lett. 102, 251117 (2013)

    Article  Google Scholar 

  8. Bhargava, N., Coppinger, M., Gupta, J.P., Wielunski, L., Kolodzey, J.: Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy. Appl. Phy. Lett. 103, 041908 (2013)

    Article  Google Scholar 

  9. Talochkin, A.B., Mashanov, V.I.: Formation of GeSn alloy on Si(100) by low-temperature molecular beam epitaxy. Appl. Phy. Lett. 105, 263101 (2014)

    Article  Google Scholar 

  10. Wang, W., Zhou, Q., Dong, Y., Tok, E.S., Yeo, Y.-C.: Critical thickness for strain relaxation of Ge1-xSnx (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001). Appl. Phy. Lett. 106, 232106 (2015)

    Article  Google Scholar 

  11. Wirths, S., Buca, D., Tiedemann, A.T., Holländer, B., Bernardy, P., Stoica, T., Grützmacher, D., Mantl, S.: Epitaxial growth of Ge1-xSnx by reduced pressure CVD using SnCl4 and Ge2H6. ECS Trans. 50, 885 (2012)

    Article  Google Scholar 

  12. Gencarelli, F., Vincent, B., Demeulemeester, J., Vantomme, A., Moussa, A., Franquet, A., Kumar, A., Bender, H., Meersschaut, J., Vandervorst, W., Loo, R., Caymax, M., Temst, K., Heynsa, M.: Crystalline properties and strain relaxation mechanism of CVD grown GeSn. ECS J. Solid State Sci. and Technol. 2, 134 (2013)

    Article  Google Scholar 

  13. Wirths, S., Buca, D., Mussler, G., Tiedemann, A.T., Hollander, B., Bernardy, P., Stoica, T., Grutzmacher, D., Mantl, S.: Reduced pressure CVD growth of Ge and Ge1-xSnx alloys. ECS J. Solid State Sci. Technol. 2, N99 (2013)

    Article  Google Scholar 

  14. Mosleh, A., Ghetmiri, S.A., Conley, B.R., Hawkridge, M., Benamara, M., Nazzal, A., Tolle, J., Yu, S.-Q., Naseem, H.A.: Material Characterization of Ge1-xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications”. Journal of Electronic Materials 43, 938 (2014)

    Article  Google Scholar 

  15. Wang, L., Wang, W., Zhou, Q., Pan, J., Zhang, Z., Tok, E.S., Yeo, Y.-C.: Post-growth annealing of germanium-tin alloys using pulsed excimer laser. J. Appl. Phys. 118, 025701 (2015)

    Article  Google Scholar 

  16. Zhang, X., Zhang, D., Cheng, B., Liu, Z., Zhang, G., Xue, C., Wang, Q.: Crystal quality improvement of GeSn alloys by thermal annealing. ECS Solid State Lett. 3, P127 (2014)

    Article  Google Scholar 

  17. Li, H., Chang, C., Chen, T.P., Cheng, H.H., Shi, Z.W., Chen, H.: Characteristics of Sn segregation in Ge/GeSn heterostructures. Appl. Phys. Lett. 105, 151906 (2014)

    Article  Google Scholar 

  18. Takeuchi, S., Shimura, Y., Nakatsuka, O., Zaima, S., Ogawa, M., Sakai, A.: Growth of highly strain-relaxed Ge1-xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method. Appl. Phys. Lett. 92, 231916 (2008)

    Article  Google Scholar 

  19. Kil, Y.-H., Yuk, S.-H., Kim, J.H., Kim, T.S., Kim, Y.T., Choi, C.-J., Shim, K.-H.: The low temperature epitaxy of Ge on Si (100) substrate using two different precursors of GeH4 and Ge2H6. Solid State Electron. 124, 35 (2016)

    Article  Google Scholar 

  20. Beeler, R., Roucka, R., Chizmeshya, A.V.G., Kouvetakis, J., Menendez, J.: Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y < 0.15) system. Phys. Rev. B 82, 035204 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Future Semiconductor Device Technology Development Program (Grant No. 10044651) funded By MOTIE (Ministry of Trade, Industry and Energy) and KSRC (Korea Semiconductor Research Consortium). It was also supported by the National Research Foundation of Korea (NRF) grant (NRF-2017R1A2B2003365) funded by the Ministry of Education, Republic of Korea. XRD samples were analyzed by Multi-Function X-ray Diffractometer (EMPYREAN, PANalytical) installed in the Center for Daegu Korea Basic Science Institute (KBSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Hwan Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kil, YH., Yuk, SH., Jang, HS. et al. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System. Electron. Mater. Lett. 14, 207–213 (2018). https://doi.org/10.1007/s13391-018-0022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0022-5

Keywords

Navigation