Electronic Materials Letters

, Volume 14, Issue 4, pp 467–473 | Cite as

Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

  • Cheng Chen
  • Taotao Ding
  • Zhiqiang Qi
  • Wei Zhang
  • Jun Zhang
  • Juan Xu
  • Jingwen Chen
  • Jiangnan Dai
  • Changqing Chen


The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol–gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

Graphical Abstract


ZnO Nanorod array Hydrothermal 



This work is supported by the National Basic Research Program of China (Grant No. 2012CB619302), the Science and Technology Bureau of Wuhan City (No. 2014010101010003), the Key Laboratory of infrared imaging materials and detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (Grant No. IIMDKFJJ-15-07), the National Natural Science Foundation of China (Grant No. 11574166), and the Director Fund of WNLO.


  1. 1.
    Dong, J.J., Zhang, X.W., Yin, Z.G., Wang, J.X., Zhang, S.G., Si, F.T., Gao, H.L., Liu, X.: Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes. Appl. Phys. Lett. 100, 171109 (2012)CrossRefGoogle Scholar
  2. 2.
    Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.D.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)CrossRefGoogle Scholar
  3. 3.
    Wei, Y.G., Wu, W.Z., Guo, R., Yuan, D.J., Das, S.M., Wang, Z.L.: Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett. 10, 3414 (2010)CrossRefGoogle Scholar
  4. 4.
    Bai, S., Wu, W., Qin, Y., Cui, N., Bayerl, D.J., Wang, X.: High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 21, 4464 (2011)CrossRefGoogle Scholar
  5. 5.
    Wu, Z.C., Xu, C.R., Wu, Y.Q., Yu, H., Tao, Y., Wan, H., Guo, F.: ZnO nanorods/Ag nanoparticles heterostructures with tunable Ag contents: a facile solution-phase synthesis and applications in photocatalysis. Cryst. Eng. Comm. 15, 5994 (2013)CrossRefGoogle Scholar
  6. 6.
    Lai, E., Kim, W., Yang, P.: Vertical nanowire array-based light emitting diodes. Nano. Res. 1, 123 (2008)CrossRefGoogle Scholar
  7. 7.
    Guo, L., Zhang, H., Zhao, D.X., Li, B.H., Zhang, Z.Z., Jiang, M.M., Shen, D.Z.: High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sens. Actuators B 12, 166 (2012)Google Scholar
  8. 8.
    Sang, D.D., Li, H.D., Cheng, S.H., Wang, Q.L., Liu, J.S., Wang, Q.L., Han, C., Chen, K., Pan, Y.W.: Ultraviolet photoelectrical properties of a n-ZnO nanorods/p-diamond heterojunction. RSC Adv. 5, 49211 (2015)CrossRefGoogle Scholar
  9. 9.
    Hu, Y.P., Yan, X.Q., Gu, Y.S., Chen, X., Bai, Z.M., Kang, Z., Long, F., Zhang, Y.: Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 339, 122 (2015)CrossRefGoogle Scholar
  10. 10.
    Yang, T.H., Cheng, K., Cheng, G., Hu, B.B., Wang, S.J., Du, Z.L.: Position-controlled hydrothermal growth of periodic individual ZnO nanorod arrays on indium tin oxide substrate. J. Phys. Chem. C 118, 20613 (2014)CrossRefGoogle Scholar
  11. 11.
    Jung, M.H., Lee, H.Y.: Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography. Nanoscale Res. Lett. 6, 159 (2011)CrossRefGoogle Scholar
  12. 12.
    Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P.: Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001)CrossRefGoogle Scholar
  13. 13.
    Zhu, Z., Chen, T., Gu, Y., Warren, J.: Zinc oxide nanowires grown by vapor-phase transport using selected metal catalysts:  a comparative study. Chem. Mater. 17, 4227 (2005)CrossRefGoogle Scholar
  14. 14.
    Yu, D., Trad, T., Jr, J.T., McLeskey, V.Cracium, Taylor, C.R.: ZnO nanowires synthesized by vapor phase transport deposition on transparent oxide substrates. Nanoscale Res. Lett. 5, 1333 (2010)CrossRefGoogle Scholar
  15. 15.
    Qiu, Y., Liu, D., Yang, J., Yang, S.: Controlled synthesis of bismuth oxide nanowires by an oxidative metal vapor transport deposition techniqu. Adv. Mater. 18, 2604 (2006)CrossRefGoogle Scholar
  16. 16.
    Chen, T., Liu, S.Y., Xie, Q., Jiang, Y.L., Ru, G.P., Liu, R., Qu, X.P.: Patterned ZnO nanorods network transistor fabricated by low-temperature hydrothermal process. Microelectron. Eng. 87, 1483 (2010)CrossRefGoogle Scholar
  17. 17.
    Xu, S., Wei, Y., Kirkham, M., Liu, J., Mai, W., Davidovic, D., et al.: Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 130, 14958 (2008)CrossRefGoogle Scholar
  18. 18.
    Baruah, S., Dutta, J.: Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 13001 (2009)CrossRefGoogle Scholar
  19. 19.
    Dong, J.J., Zhang, X.W., Yin, Z.G., Zhang, S.G., Wang, J.X., Tan, H.R., Gao, Y., Si, F.T., Gao, H.L.: Controllable growth of highly ordered ZnO nanorod arrays via inverted self-assembled monolayer template. ACS Appl. Mater. Interfaces 3, 4388 (2011)CrossRefGoogle Scholar
  20. 20.
    Li, C., Hong, G.S., Wang, P.W., Yu, D.P., Qi, L.M.: Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chem. Mater. 21, 891 (2009)CrossRefGoogle Scholar
  21. 21.
    Yin, J., Li, Y., Chen, S.C., Li, J., Kang, J.Y., Li, W., Jin, P., Chen, Y.H., Wu, Z.H., Dai, J.N., Fang, Y.Y., Chen, C.Q.: Surface plasmon enhanced hot exciton emission in deep UV-emitting AlGaN multiple quantum wells. Adv. Opt. Mater. 2, 451 (2014)CrossRefGoogle Scholar
  22. 22.
    Kim, J.Y., Kim, S.H., Lee, H.H., Lee, K.H., Ma, W.L., Gong, X., Heeger, A.J.: New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572 (2006)CrossRefGoogle Scholar
  23. 23.
    Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., Yang, P.D.: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231 (2005)CrossRefGoogle Scholar
  24. 24.
    Yi, S.H., Choi, S.K., Jang, J.M., Kim, J.A., Jung, W.G.: Low-temperature growth of ZnO nanorods by chemical bath deposition. J. Colloid Interface Sci. 313, 705 (2007)CrossRefGoogle Scholar
  25. 25.
    Wu, W.B., Hu, G.D., Cui, S.G., Zhou, Y., Wu, H.T.: Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route. Cryst. Growth Des. 8, 4014 (2008)CrossRefGoogle Scholar
  26. 26.
    Kim, K.S., Jeong, H., Jeong, M.S., Jung, G.Y.: Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv. Funct. Mater. 20, 3055 (2010)CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Zhang, X.H., Su, J., Li, H.X., Zhang, Q., Gao, Y.H.: Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector. Opt. Express 22, 30148 (2014)CrossRefGoogle Scholar
  28. 28.
    Chen, X., Yan, X.Q., Bai, Z.M., Lin, P., Shen, Y.W., Zheng, X., Feng, Y.Y., Zhang, Y.: Facile fabrication of large-scale patterned ZnO nanorod arrays with tunable arrangement, period and morphology. Cryst. Eng. Comm. 15, 8022 (2013)CrossRefGoogle Scholar
  29. 29.
    Liu, D.F., Xiang, Y.J., Wu, X.C., Zhang, Z.X., Liu, L.F., Song, L., Zhao, X.W., et al.: Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano Lett. 6, 2375 (2006)CrossRefGoogle Scholar
  30. 30.
    Kwok, W.M., Djurisic, A.B., Leung, Y.H., Li, D., Tam, K.H., Phillips, D.L., Chan, W.K.: Influence of annealing on stimulated emission in ZnO nanorods. Appl. Phys. Lett. 89, 183112 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Cheng Chen
    • 1
  • Taotao Ding
    • 1
  • Zhiqiang Qi
    • 1
  • Wei Zhang
    • 1
  • Jun Zhang
    • 1
  • Juan Xu
    • 1
  • Jingwen Chen
    • 1
  • Jiangnan Dai
    • 1
  • Changqing Chen
    • 1
  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations