Advertisement

Electronic Materials Letters

, Volume 15, Issue 2, pp 247–252 | Cite as

Characterization of Copper Complex Paste: Manufacture of Thin Cu-Seed Films on Alumina Substrates

  • Chang Hyun Lee
  • Jong-Hyun LeeEmail author
Original Article - Theory, Characterization and Modeling
  • 96 Downloads

Abstract

The fabrication process of pure Cu films on an alumina substrate using a copper complex paste was evaluated. After vigorous milling for 7 h, copper complexes (copper(II) formate and pure Cu) with an average particle size of 312 nm were formed. A printed pattern was prepared with a paste containing the particles and a pure Cu film was formed by annealing at 250 °C for 30 min under nitrogen atmosphere. After removing the upper part of the film, a homogenous Cu film with a thickness of 424 nm was observed on the substrate. The film demonstrated excellent adhesion properties and had an low electrical resistivity of 4.38 μΩ cm. Hence, the film can be used as a seed for additional Cu plating.

Graphical Abstract

Keywords

Thin copper film Alumina substrate Copper complex paste Adhesion Electrical resistivity 

Notes

Acknowledgements

This study was supported by the Research Program (2018-0497) funded by the SeoulTech (Seoul National University of Science and Technology).

References

  1. 1.
    Rong, C., Zhang, J., Liu, C., Yang, S.: Surface metallization of alumina ceramics by pulsed high energy density plasma process. Appl. Surf. Sci. 200, 104–110 (2002)CrossRefGoogle Scholar
  2. 2.
    Lim, J.D., Susan, Y.S.Y., Daniel, R.M., Leong, K.C., Wong, C.C.: Surface roughness effect on copper–alumina adhesion. Microelectron. Reliab. 53, 1548–1552 (2013)CrossRefGoogle Scholar
  3. 3.
    Reboun, J., Hromadka, K., Hermansky, V., Johan, J.: Properties of power electronic substrates based on thick printed copper technology. Microelectron. Eng. 167, 58–62 (2017)CrossRefGoogle Scholar
  4. 4.
    Reboun, J., Hlina, J., Totzauer, P., Hamacek, A.: Effect of copper-and silver-based films on alumina substrate electrical properties. Ceram. Int. 44, 3497–3500 (2018)CrossRefGoogle Scholar
  5. 5.
    Rossnagel, S.M., Nichols, C., Hamaguchi, S., Ruzic, D., Turkot, R.: Thin, high atomic weight refractory film deposition for diffusion barrier, adhesion layer, and seed layer applications. J. Vac. Sci. Technol. B 14, 1819–1827 (1996)CrossRefGoogle Scholar
  6. 6.
    Hoogvliet, J.C., Van Bennekom, W.P.: Gold thin-film electrodes: an EQCM study of the influence of chromium and titanium adhesion layers on the response. Electrochim. Acta 47, 599–611 (2001)CrossRefGoogle Scholar
  7. 7.
    Yang, J.J., Strachan, J.P., Xia, Q., Ohlberg, D.A.A., Kuekes, P.J., Kelly, R.D., Stickle, W.F., Stewart, D.R., Medeiros-Ribeiro, G., Williams, R.S.: Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 22, 4034–4038 (2010)CrossRefGoogle Scholar
  8. 8.
    Najiminaini, M., Vasefi, F., Kaminska, B., Carson, J.J.L.: Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer. Opt. Express 19, 26186–26197 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, W., Chen, M., Wei, J., Li, W., You, C.: Synthesis and characterization of air-stable Cu nanoparticles for conductive pattern drawing directly on paper substrates. J. Nanopart. Res. 15, 1949 (2013)CrossRefGoogle Scholar
  10. 10.
    Kim, Y.H., Lee, D.K., Jo, B.G., Jeong, J.H., Kang, Y.S.: Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids Surf. A 284, 364–368 (2006)Google Scholar
  11. 11.
    Xu, X., Luo, X., Zhuang, H., Li, W., Zhang, B.: Electroless silver coating on fine copper powder and its effects on oxidation resistance. Mater. Lett. 57, 3987–3991 (2003)CrossRefGoogle Scholar
  12. 12.
    Yoshida, M., Tokuhisa, H., Itoh, U., Kamata, T., Sumita, I., Sekine, S.: Novel low-temperature-sintering type Cu-alloy pastes for silicon solar cells. Energy Proc. 21, 66–74 (2012)CrossRefGoogle Scholar
  13. 13.
    Panek, P., Socha, R.P., Putynkowski, G., Slaoui, A.: The new copper composite of pastes for Si solar cells front electrode application. Energy Proc. 92, 962–970 (2016)CrossRefGoogle Scholar
  14. 14.
    Yabuki, A., Arriffin, N., Yanase, M.: Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films 519, 6530–6533 (2011)CrossRefGoogle Scholar
  15. 15.
    Yabuki, A., Tanaka, S.: Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines. Mater. Res. Bull. 47, 4107–4111 (2012)CrossRefGoogle Scholar
  16. 16.
    Joo, M., Lee, B., Jeong, S., Lee, M.: Laser sintering of Cu paste film printed on polyimide substrate. Appl. Surf. Sci. 258, 521–524 (2011)CrossRefGoogle Scholar
  17. 17.
    Lee, B., Jeong, S., Kim, Y., Jeong, I., Woo, K., Moon, J.: Hybrid copper complex-derived conductive patterns printed on polyimide substrates. Met. Mater. Int. 18, 493–498 (2012)CrossRefGoogle Scholar
  18. 18.
    Joo, M., Lee, B., Jeong, S., Lee, M.: Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate. Thin Solid Films 520, 2878–2883 (2012)CrossRefGoogle Scholar
  19. 19.
    ASTM Standard D-3359-09e2: Test Methods for Measuring Adhesion by Tape Test (2009)Google Scholar
  20. 20.
    Turco, M., Bagnasco, G., Cammarano, C., Senese, P., Costantino, U., Sisani, M.: Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix. Appl. Catal. B 77, 46–57 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSeoul National University of Science and TechnologySeoulRepublic of Korea

Personalised recommendations