Skip to main content
Log in

Uniform Cs2SnI6 Thin Films for Lead-Free and Stable Perovskite Optoelectronics via Hybrid Deposition Approaches

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Herein, we synthesized uniform Cs2SnI6 films by two kinds of hybrid deposition methods by considering volume expansion involved during phase transformations. First, oblique thermal evaporation for CsI followed by SnI4 spin-coating resulted in uniform Cs2SnI6 films free of impurity phases. The rapid expansion (within 10 s of spin-coating) from CsI to Cs2SnI6\((\Delta V = 106\% )\) was accommodated by porous CsI films inhibiting crack formation. Excess SnI4 on the Cs2SnI6 after spin-coating was effectively removed by toluene washing without any damages to Cs2SnI6, and optimum deposition parameters were suggested in terms of carrier mobility. Second, annealing CsI with SnI4 vapor at 250 °C and post-annealing in the SnI4 and I2 vapor at 300 °C produced Cs2SnI6 film with complete coverage. The slow reaction (70 min for a complete conversion) provided sufficient time for complete diffusion of SnI4 into CsI without crack formation even with compact CsI. The nonradiative recombination path in Cs2SnI6 was suppressed by post-annealing in the SnI4- and I2-atmosphere, as confirmed from the enhanced photoluminescence.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hwang, T., Lee, B., Kim, J., Lee, S., Gil, B., Yun, A.J., Park, B.: From nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv. Mater. 30, 1704208 (2018)

    Article  Google Scholar 

  2. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014)

    Article  Google Scholar 

  3. Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Jang, G.S., Nam, S., Park, B.: Solvent and intermediate phase as boosters for the perovskite transformation and solar cell performance. Sci. Rep. 6, 25648 (2016)

    Article  Google Scholar 

  4. Hwang, T., Cho, D., Kim, J., Kim, J., Lee, S., Lee, B., Kim, K.H., Hong, S., Kim, C., Park, B.: Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy 25, 91 (2016)

    Article  Google Scholar 

  5. Lee, B., Lee, S., Cho, D., Kim, J., Hwang, T., Kim, K.H., Hong, S., Moon, T., Park, B.: Evaluating the optoelectronic quality of hybrid perovskites by conductive atomic force microscopy with noise spectroscopy. ACS Appl. Mater. Interfaces 8, 30985 (2016)

    Article  Google Scholar 

  6. Hwang, T., Lee, S., Kim, J., Kim, J., Kim, C., Shin, B., Park, B.: Tailoring the mesoscopic TiO2 layer: concomitant parameters for enabling high-performance perovskite solar cells. Nanoscale Res. Lett. 12, 57 (2017)

    Article  Google Scholar 

  7. Kim, J., Hwang, T., Lee, S., Lee, B., Kim, J., Kim, J., Gil, B., Park, B.: Synergetic effect of double-step blocking layer for the perovskite solar cell. J. Appl. Phys. 122, 145106 (2017)

    Article  Google Scholar 

  8. Shin, G.S., Choi, W.-G., Na, S., Gökdemir, F.P., Moon, T.: Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155 (2018)

    Article  Google Scholar 

  9. Cho, D., Hwang, T., Cho, D.-G., Park, B., Hong, S.: Photoconductive noise microscopy revealing quantitative effect of localized electronic traps on the perovskite-based solar cell performance. Nano Energy 43, 29 (2018)

    Article  Google Scholar 

  10. Kim, J., Hwang, T., Lee, B., Lee, S., Park, K., Park, H.H., Park, B.: An aromatic diamine molecule as the A-site solute for highly durable and efficient perovskite solar cells. Small Method (2018). https://doi.org/10.1002/smtd.201800361

    Google Scholar 

  11. Jo, J.W., Yoo, Y., Jeong, T., Ahn, S., Ko, M.J.: Low-temperature processable charge transporting materials for the flexible perovskite solar cells. Electron. Mater. Lett. 14, 657 (2018)

    Article  Google Scholar 

  12. Shin, G.S., Choi, W.-G., Na, S., Ryu, S.O., Moon, T.: Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017)

    Article  Google Scholar 

  13. Jeon, N.J., Na, H., Jung, E.H., Yang, T.-Y., Lee, Y.G., Kim, G., Shin, H.-W., Seok, S.I., Lee, J., Seo, J.: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682 (2018)

    Article  Google Scholar 

  14. Lee, S.-Y., Choi, H., Li, H., Ji, K., Nam, S., Choi, J., Ahn, S.-W., Lee, H.-M., Park, B.: Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell. Sol. Energy Mater. Sol. Cells 120, 412 (2014)

    Article  Google Scholar 

  15. Tunuguntla, V., Chen, W.-C., Newman, T.D., Chen, C.-Y., Hsieh, M.-C., Lu, S.-H., Su, C., Chen, L.-C., Chen, K.-H.: Enhancement of charge collection at shorter wavelengths from alternative CdS deposition conditions for high efficiency CZTSSe solar cells. Sol. Energy Mater. Sol. Cells 149, 49 (2016)

    Article  Google Scholar 

  16. Lee, S., Flanagan, J.C., Lee, B., Hwang, T., Kim, J., Gil, B., Shim, M., Park, B.: Route to improving photovoltaics based on CdSe/CdSexTe1−x type-II heterojunction nanorods: the effect of morphology and cosensitization on carrier recombination and transport. ACS Appl. Mater. Interfaces 9, 31931 (2017)

    Article  Google Scholar 

  17. Kim, J., Shin, B.: Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S, Se)4 thin film solar cells. Electron. Mater. Lett. 13, 373 (2017)

    Article  Google Scholar 

  18. Yang, S., Fu, W., Zhang, Z., Chen, H., Li, C.-Z.: Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5, 11462 (2017)

    Article  Google Scholar 

  19. Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014)

    Article  Google Scholar 

  20. Kumar, M.H., Dharani, S., Leong, W.L., Boix, P.P., Prabhakar, R.R., Baikie, T., Shi, C., Ding, H., Ramesh, R., Asta, M., Graetzel, M., Mhaisalkar, S.G., Mathews, N.: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122 (2014)

    Article  Google Scholar 

  21. Shao, S., Liu, J., Portale, G., Fang, H.-H., Blake, G.R., Brink, G.H.T., Koster, L.J.A., Loi, M.A.: Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018)

    Article  Google Scholar 

  22. Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014)

    Article  Google Scholar 

  23. Qiu, X., Cao, B., Yuan, S., Chen, X., Qiu, Z., Jiang, Y., Ye, Q., Wang, H., Zeng, H., Liu, J., Kanatzidis, M.G.: From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Sol. Energy Mater. Sol. Cells 159, 227 (2017)

    Article  Google Scholar 

  24. Giustino, F., Snaith, H.J.: Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233 (2016)

    Article  Google Scholar 

  25. Saparov, B., Sun, J.-P., Meng, W., Xiao, Z., Duan, H.-S., Gunawan, O., Shin, D., Hill, I.G., Yan, Y., Mitzi, D.B.: Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem. Mater. 28, 2315 (2016)

    Article  Google Scholar 

  26. Kapil, G., Ohta, T., Koyanagi, T., Vigneshwaran, M., Zhang, Y., Ogomi, Y., Pandey, S.S., Yoshino, K., Shen, Q., Toyoda, T., Rahman, M.M., Minemoto, T., Murakami, T.N., Segawa, H., Hayase, S.: Investigation of interfacial charge transfer in solution processed Cs2SnI6 thin films. J. Phys. Chem. C 121, 13092 (2017)

    Article  Google Scholar 

  27. Lee, B., Krenselewski, A., Baik, S.I., Seidmana, D.N., Chang, R.P.H.: Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6−xBrx, for potential solar cell applications. Sustain. Energy Fuels 1, 710 (2017)

    Article  Google Scholar 

  28. Lee, B., Stoumpos, C.C., Zhou, N., Hao, F., Malliakas, C., Yeh, C.-Y., Marks, T.J., Kanatzidis, M.G., Chang, R.P.H.: Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 136, 15379 (2014)

    Article  Google Scholar 

  29. Maughan, A.E., Ganose, A.M., Bordelon, M.M., Miller, E.M., Scanlon, D.O., Neilson, J.R.: Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 138, 8453 (2016)

    Article  Google Scholar 

  30. Guo, F., Lu, Z., Mohanty, D., Wang, T., Bhat, I.B., Zhang, S., Shi, S., Washington, M.A., Wang, G.-C., Lu, T.-M.: A two-step dry process for Cs2SnI6 perovskite thin film. Mater. Res. Lett. 5, 540 (2017)

    Article  Google Scholar 

  31. Kanatzidis, M.G., Chang, R.P.H., Stoumpos, K., Lee, B.: US Pat., US 20160211083 A1, Northwestern University (2016)

  32. Plawsky, J.L., Kim, J.K., Schubert, E.F.: Engineered nanoporous and nanostructured films. Mater. Today 12, 36 (2009)

    Article  Google Scholar 

  33. Dimesso, L., Das, C., Stöhr, M., Mayer, T., Jaegermann, W.: Properties of cesium tin iodide (Cs-Sn-I) systems after annealing under different atmospheres. Mater. Chem. Phys. 197, 27 (2017)

    Article  Google Scholar 

  34. Ungureanu, A.-M., Oprea, O., Vasile, B.S., Andronescu, C., Voicu, G., Jitaru, I.: Temperature effect over structure and photochemical properties of nanostructured SnO2 powders. Cent. Eur. J. Chem. 12, 909 (2014)

    Article  Google Scholar 

  35. Ansari, S.G., Fouad, H., Shin, H.-S., Ansari, Z.A.: Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique. Chem. Biol. Interact. 242, 45 (2015)

    Article  Google Scholar 

  36. Yuanda, W., Maosong, T., Xiuli, H., Yushu, Z., Guorui, D.: Thin film sensors of SnO2-CuO-SnO2 sandwich structure to H2S. Sens. Actuator B Chem. 79, 187 (2001)

    Article  Google Scholar 

  37. Kim, J., Choi, H., Nahm, C., Kim, C., Nam, S., Kang, S., Jung, D.-R., Kim, J.I., Kang, J., Park, B.: The role of a TiCl4 treatment on the performance of CdS quantum-dot-sensitized solar cells. J. Power Sources 220, 108 (2012)

    Article  Google Scholar 

  38. Lee, W., Kim, H., Jung, D.-R., Kim, J., Nahm, C., Lee, J., Kang, S., Lee, B., Park, B.: An effective oxidation approach for luminescence enhancement in CdS quantum dots by H2O2. Nanoscale Res. Lett. 7, 672 (2012)

    Article  Google Scholar 

  39. Kim, T., Oh, J., Park, B., Hong, K.S.: Correlation between strain and dielectric properties in ZrTiO4 thin films. Appl. Phys. Lett. 76, 3043 (2000)

    Article  Google Scholar 

  40. Xiao, Z., Zhou, Y., Hosono, H., Kamiya, T.: Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. Phys. Chem. Chem. Phys. 17, 18900 (2015)

    Article  Google Scholar 

  41. Kim, J.I., Kim, J., Lee, J., Jung, D.-R., Kim, H., Choi, H., Lee, S., Byun, S., Kang, S., Park, B.: Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res. Lett. 7, 482 (2012)

    Article  Google Scholar 

  42. Jung, D.-R., Kim, J., Park, B.: Surface-passivation effects on the photoluminescence enhancement in ZnS: Mn nanoparticles by ultraviolet irradiation with oxygen bubbling. Appl. Phys. Lett. 96, 211908 (2010)

    Article  Google Scholar 

  43. Jung, D.-R., Son, D., Kim, J., Kim, C., Park, B.: Highly luminescent surface-passivated ZnS: Mn nanoparticles by a simple one-step synthesis. Appl. Phys. Lett. 93, 163118 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF: 2016R1A2B4012938) and Korea Institute of Energy Technology Evaluation and Planning (KETEP: 20183010014470).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byungha Shin or Byungwoo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Shin, B. & Park, B. Uniform Cs2SnI6 Thin Films for Lead-Free and Stable Perovskite Optoelectronics via Hybrid Deposition Approaches. Electron. Mater. Lett. 15, 192–200 (2019). https://doi.org/10.1007/s13391-018-00114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-00114-7

Keywords

Navigation