Electronic Materials Letters

, Volume 15, Issue 2, pp 179–185 | Cite as

Sulfur Incorporation at Interface Between Atomic-Layer-Deposited Al2O3 Thin Film and AlGaN/GaN Heterostructure

  • Yoo Jin Jo
  • Hyun Soo Jin
  • Min-Woo HaEmail author
  • Tae Joo ParkEmail author
Original Article - Electronics, Magnetics and Photonics


Surface incorporation at the interface between atomic-layer-deposited Al2O3 thin film and AlGaN/GaN heterostructure was studied based on the understanding of charge configuration and electronic band structure through fabrication and numerical simulation. The annealing in H2S ambient at various temperatures prior to deposition of Al2O3 gate insulator incorporated the sulfur. The Al2O3 was formed on the sulfur treated GaN cap/AlGaN barrier/GaN by trimethylaluminum and water-based atomic layer deposition. Thereafter, TiN electrode was sputtered on the Al2O3, which was followed by forming gas annealing. The time-of-flight secondary ion mass spectroscopy disclosed that the sulfur located at the interface of Al2O3/GaN cap, of which concentration increased with annealing temperature. Positive charges at the interface of Al2O3/GaN cap induced by sulfur increased the two-dimensional electron gas density and shifted the pinch-off voltage in the negative direction. The diffusion of sulfur in the GaN cap and AlGaN barrier can hamper the electron accumulation under positive gate voltage and shifts the accumulation voltage of the spillover region in the positive direction. Furthermore, the incorporated sulfur suppressed the gate leakage current.

Graphical Abstract


GaN AlGaN Sulfur annealing Interface H2Dielectrics 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (No. 2017R1C1B5016033 and 2017R1A2B4002842).

Supplementary material

13391_2018_110_MOESM1_ESM.docx (430 kb)
Supplementary material 1 (DOCX 430 kb)


  1. 1.
    Ťapajna, M., Kuzmík, J.: A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors. Appl. Phys. Lett. 100, 113509 (2012)CrossRefGoogle Scholar
  2. 2.
    Luong, T.-T., Tran, B.T., Ho, Y.-T., Ha, M.-T.-H., Hsiao, Y.-L., Liu, S.-C., Chiu, S.-C., Chang, E.-Y.: Performance improvements of AlGaN/GaN HEMTs by strain modification and unintentional carbon incorporation. Electron. Mater. Lett. 11, 217 (2015)CrossRefGoogle Scholar
  3. 3.
    Zhao, B., Wang, F., Chen, H., Zheng, L., Su, L., Zhao, D., Fang, X.: An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 27, 1700264 (2017)CrossRefGoogle Scholar
  4. 4.
    Greco, G., Fiorenza, P., Iucolano, F., Severino, A., Giannazzo, F., Roccaforte, F.: Conduction mechanisms at interface of AlN/SiN dielectric stacks with AlGaN/GaN heterostructures for normally-off high electron mobility transistors: correlating device behavior with nanoscale interfaces properties. ACS Appl. Mater. Interfaces 9, 35383 (2017)CrossRefGoogle Scholar
  5. 5.
    Wienecke, S., Romanczyk, B., Guidry, M., Li, H., Ahmadi, E., Hestroffer, K., Zheng, X., Keller, S., Mishra, U.K.: N-polar GaN cap MISHEMT with record power density exceeding 6.5 W/mm at 94 GHz. IEEE Electron Device Lett. 38, 359 (2017)CrossRefGoogle Scholar
  6. 6.
    Saito, W., Takada, Y., Kuraguchi, M., Tsuda, K., Omura, I., Ogura, T., Ohashi, H.: High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 50, 2528 (2003)CrossRefGoogle Scholar
  7. 7.
    Ishida, M., Ueda, T., Tanaka, T., Ueda, D.: GaN on Si technologies for power switching devices. IEEE Trans. Electron Devices 60, 3053 (2013)CrossRefGoogle Scholar
  8. 8.
    Chen, W., Wong, K.-Y., Huang, W., Chen, K.J.: High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors. Appl. Phys. Lett. 92, 253501 (2008)CrossRefGoogle Scholar
  9. 9.
    Xing, H., Dora, Y., Chini, A., Heikman, S., Keller, S., Mishra, U.K.: High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Device Lett. 25, 161 (2004)CrossRefGoogle Scholar
  10. 10.
    Seok, O., Ha, M.-W.: AlGaN/GaN MOS-HEMTs-on-Si employing sputtered TaN-based electrodes and HfO2 gate insulator. Solid-State Electron. 105, 1 (2015)CrossRefGoogle Scholar
  11. 11.
    Ye, P.D., Yang, B., Ng, K.K., Bude, J., Wilk, G.D., Halder, S., Hwang, J.C.M.: GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric. Appl. Phys. Lett. 86, 063501 (2005)CrossRefGoogle Scholar
  12. 12.
    Hashizume, T., Anantathanasarn, S., Negoro, N., Sano, E., Hasegawa, H., Kumakura, K., Makimoto, T.: Al2O3 insulated-gate structure for AlGaN/GaN heterostructure field effect transistors having thin AlGaN barrier layers. Jpn. J. Appl. Phys. 43, L777 (2004)CrossRefGoogle Scholar
  13. 13.
    Ganguly, S., Verma, J., Li, G., Zimmermann, T., Xing, H., Jena, D.: Presence and origin of interface charges at atomic-layer deposited Al2O3/III-nitride heterjunctions. Appl. Phys. Lett. 99, 193504 (2011)CrossRefGoogle Scholar
  14. 14.
    Esposto, M., Krishnamoorthy, S., Nath, D.N., Bajaj, S., Hung, T.-H., Rajan, S.: Electrical properties of atomic layer deposited aluminum oxide on gallium nitride. Appl. Phys. Lett. 99, 133503 (2011)CrossRefGoogle Scholar
  15. 15.
    Matys, M., Adamowicz, B., Domanowska, A., Michalewicz, A., Stoklas, R., Akazawa, M., Yatabe, Z., Hashizume, T.: On the origin of interface states at oxide/III-nitride heterojunction interfaces. J. Appl. Phys. 120, 225305 (2016)CrossRefGoogle Scholar
  16. 16.
    Ťapajna, M., Stoklas, R., Gregušová, D., Gucmann, F., Husekova, K., Haščík, Š., Fröhlich, K., Tóth, L., Pécz, B., Brunner, F., Kuzmík, J.: Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: correlation of electrical, structural, and chemical properties. Appl. Surf. Sci. 426, 656–661 (2017)CrossRefGoogle Scholar
  17. 17.
    George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111 (2010)CrossRefGoogle Scholar
  18. 18.
    Byun, Y.-C., Choi, S., An, Y., McIntyre, P.C., Kim, H.: Tailoring the interface quality between HfO2 and GaAs via in situ ZnO passivation using atomic layer deposition. ACS Appl. Mater. Interfaces 6, 10482 (2014)CrossRefGoogle Scholar
  19. 19.
    Mahata, C., Byun, Y.-C., An, C.-H., Choi, S., An, Y., Kim, H.: Comparative study of atomic-layer-deposited stacked (HfO2/Al2O3) and nano laminated (HfAlOx) dielectrics on In0.53Ga0.47As. ACS Appl. Mater. Interfaces 5, 4195 (2013)CrossRefGoogle Scholar
  20. 20.
    Chang, L.-B., Chang, C.-H., Jeng, M.-J., Chiu, H.-C., Kuo, H.-F.: Barrier height enhancement of AlxGa1-xN/GaN Schottky diodes prepared by P2S5/(NH4)2S treatments. Electrochem. Solid State Lett. 10, H79 (2007)CrossRefGoogle Scholar
  21. 21.
    Lin, C.-W., Chiu, H.-C., Lin, C.-K., Fu, J.S.: High-k praseodymium oxide passivated AlGaN/GaN MOSFETs using P2S5/(NH4)2Sx + UV interface treatment. Microelectron. Reliab. 51, 381 (2011)CrossRefGoogle Scholar
  22. 22.
    Driad, R., Lu, Z.H., Charbonneau, S., McKinnon, W.R., Laframboise, S., Poole, P.J., McAlister, S.P.: Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment. Appl. Phys. Lett. 73, 665 (1998)CrossRefGoogle Scholar
  23. 23.
    Lin, H.-C., Wang, W., Brammertz, G., Meuris, M., Heyns, M.: Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator. Microelectron. Eng. 86, 1554–1557 (2009)CrossRefGoogle Scholar
  24. 24.
    Iyer, R., Chang, R.R., Lile, D.L.: Sulfur as a surface passivation for InP. Appl. Phys. Lett. 53, 134–136 (1988)CrossRefGoogle Scholar
  25. 25.
    Eftekhari, G.: Effects of sulfur passivation and rapid thermal annealing on the electrical properties of InP metal-insulator semiconductor Schottky diodes. J. Vac. Sci. Technol. B 12, 3214–3217 (1994)CrossRefGoogle Scholar
  26. 26.
    Lin, Y.-J., Lee, C.-T.: Investigation of surface treatments for nonalloyed ohmic contact formation in Ti/Al contacts to n-type GaN. Appl. Phys. Lett. 77, 3986–3988 (2000)CrossRefGoogle Scholar
  27. 27.
    Huh, C., Kim, S.-W., Kim, H.-S., Lee, I.-H., Park, S.-J.: Effective sulfur passivation of an n-type GaN surface by an alcohol-based sulfide solution. J. Appl. Phys. 87, 4591–4593 (2000)CrossRefGoogle Scholar
  28. 28.
    Huh, C., Kim, S.-W., Kim, H.-M., Kim, D.-J., Park, S.-J.: Effect of alcohol-based sulfur treatment on Pt Ohmic contacts to p-type GaN. Appl. Phys. Lett. 78, 1942–1944 (2001)CrossRefGoogle Scholar
  29. 29.
    Song, J.O., Park, S.-J., Seong, T.-Y.: Effects of sulfur passivation on Ti/Al ohmic contacts to n-type GaN using CH3CSNH2 solution. Appl. Phys. Lett. 80, 3129–3131 (2002)CrossRefGoogle Scholar
  30. 30.
    Li, Z.S., Cai, W.Z., Su, R.Z., Dong, G.S., Huang, D.M., Ding, X.M., Hou, X.Y., Wang, X.: S2Cl2 treatment: a new sulfur passivation method of GaAs surface. Appl. Phys. Lett. 64, 3425–3427 (1994)CrossRefGoogle Scholar
  31. 31.
    Yang, J.-K., Kang, M.-G., Park, H.-H.: Chemical and electrical characterization of Gd2O3/GaAs interface improved by sulfur passivation. J. Appl. Phys. 96, 4811–4816 (2004)CrossRefGoogle Scholar
  32. 32.
    Jin, H.S., Cho, Y.J., Lee, S.-M., Kim, D.H., Kim, D.W., Lee, D., Park, J.-B., Won, J.Y., Lee, M.-J., Cho, S.-H., Hwang, C.S., Park, T.J.: Interface sulfur passivation using H2S annealing for atomic-layer-deposited Al2O3 films on an ultrathin-body In0.53Ga0.47As-on-insulator. Appl. Surf. Sci. 315, 178–183 (2014)CrossRefGoogle Scholar
  33. 33.
    Jin, H.S., Cho, Y.J., Seok, T.J., Kim, D.H., Kim, D.W., Lee, S.-M., Park, J.-B., Yun, D.-J., Kim, S.K., Hwang, C.S., Park, T.J.: Improved interface properties of atomic-layer-deposited HfO2 film on InP using interface sulfur passivation with H2S pre-deposition annealing. Appl. Surf. Sci. 357, 2306–2312 (2015)CrossRefGoogle Scholar
  34. 34.
    User’s manual, ATLAS version 5.20.2.R, SilvacoGoogle Scholar
  35. 35.
    Fagerlind, M., Allerstam, F., Sveinbjörnsson, E.Ö., Rorsman, N., Kakanakova-Georgieva, A., Lundskog, A., Forsberg, U., Janzén, E.: Investigation of the interface between silicon nitride passivations and AlGaN/AlN/GaN heterostructures by C(V) characterization of metal-insulator-semiconductor-heterostructure capacitors. J. Appl. Phys. 108, 014508 (2010)CrossRefGoogle Scholar
  36. 36.
    Huang, S., Yang, S., Roberts, J., Chen, K.J.: Threshold voltage instability in Al2O3/GaN/AlGaN/GaN metal-insulator-semiconductor high-electron mobility transistors. Jpn. J. Appl. Phys. 50, 110202 (2011)CrossRefGoogle Scholar
  37. 37.
    Yang, S., Tang, Z., Wong, K.-Y., Lin, Y.-S., Lu, Y., Huang, S., Chen, K.J.: Mapping of interface traps in high-performance Al2O3/AlGaN/GaN MIS-heterostructures using frequency- and temperature-dependent C-V techniques. In: IEDM Digest of Technical Papers, pp. 6.3.1–6.3.4 (2013)Google Scholar
  38. 38.
    Hori, Y., Yatabe, Z., Hashizume, T.: Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J. Appl. Phys. 114, 244503 (2013)CrossRefGoogle Scholar
  39. 39.
    Mizue, C., Hori, Y., Miczek, M., Hashizume, T.: Capacitance-voltage characteristics of Al2O3/AlGaN/GaN structures and state density distribution at Al2O3/AlGaN interface. Jpn. J. Appl. Phys. 50, 021001 (2011)CrossRefGoogle Scholar
  40. 40.
    Jogai, B.: Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 93, 1631–1635 (2003)CrossRefGoogle Scholar
  41. 41.
    Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S., Mishra, U.K.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000)CrossRefGoogle Scholar
  42. 42.
    Smorchkova, I.P., Elsass, C.R., Ibbetson, J.P., Vetury, R., Heying, B., Fini, P., Haus, E., DenBaars, S.P., Speck, J.S., Mishra, U.K.: Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 86, 4520–4526 (1999)CrossRefGoogle Scholar
  43. 43.
    Vetury, R., Zhang, N.Q., Keller, S., Mishra, U.K.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 48, 560–566 (2001)CrossRefGoogle Scholar
  44. 44.
    Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W.J., Eastman, L.F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., Hilsenbeck, J.: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)CrossRefGoogle Scholar
  45. 45.
    Seok, T.J., Cho, Y.J., Jin, H.S., Kim, D.H., Kim, D.W., Lee, S.-M., Park, J.-B., Won, J.-Y., Kim, S.K., Hwang, C.S., Park, T.J.: High quality interfacial sulfur passivation via H2S pre-deposition annealing for an atomic-layer-deposited HfO2 film on a Ge substrate. J. Mater. Chem. C 4, 850–856 (2016)CrossRefGoogle Scholar
  46. 46.
    Krebs, B., Schiemann, A., Läge, M.: Synthesis and crystal structure of a novel hexagonal modification of Al2S3 with five-coordinated aluminum. Z. Anorg. Allg. Chem. 619, 983–988 (1993)CrossRefGoogle Scholar
  47. 47.
    Vermang, B., Fjällström, V., Pettersson, J., Salomé, P., Edoff, M.: Development of rear surface passivated Cu(In, Ga)Se2 thin film solar cells with nano-sized local rear point contacts. Sol. Energy Mater. Sol. Cells 117, 505–511 (2013)CrossRefGoogle Scholar
  48. 48.
    Hoex, B., Bosman, M., Nandakumar, N., Kessels, W.: Silicon surface passivation by aluminum oxide studied with electron energy loss spectroscopy. Phys. Status Solidi Rapid Res. Lett. 7, 937–941 (2013)CrossRefGoogle Scholar
  49. 49.
    Kimoto, K., Matsui, Y., Nabatame, T., Yasuda, T., Mizoguchi, T., Tanaka, I., Toriumi, A.: Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si (001) using energy-loss near-edge structures. Appl. Phys. Lett. 83, 4306–4308 (2003)CrossRefGoogle Scholar
  50. 50.
    Chen, X.-Y., Hou, X.-Y., Cao, X.-A., Ding, X.-M., Chen, L.-Y., Zhao, G.-Q., Wang, X.: Gallium sulfide thin film grown on GaAs(100) by microwave glow discharge. J. Cryst. Growth 173, 51–56 (1997)CrossRefGoogle Scholar
  51. 51.
    Khan, M.A., Hu, X., Tarakji, A., Simin, G., Yang, J., Gaska, R., Shur, M.S.: AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates. Appl. Phys. Lett. 77, 1339–1341 (2000)CrossRefGoogle Scholar
  52. 52.
    Gaska, R., Yang, J., Osinsky, A., Chen, Q., Khan, M.A., Orlov, A.O., Snider, G.L., Shur, M.S.: Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates. Appl. Phys. Lett. 72, 707–709 (1998)CrossRefGoogle Scholar
  53. 53.
    Shur, M.S.: GaN based transistors for high power applications. Solid-State Electron. 42, 2131–2138 (1998)CrossRefGoogle Scholar
  54. 54.
    Lin, Z., Kim, H., Lee, J., Lu, W.: Thermal stability of Schottky contacts on strained AlGaN/GaN heterostructures. Appl. Phys. Lett. 84, 1585–1587 (2004)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Advanced Materials EngineeringHanyang UniversityAnsanRepublic of Korea
  2. 2.Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanRepublic of Korea
  3. 3.Department of Electrical EngineeringMyongji UniversityYonginRepublic of Korea

Personalised recommendations