Skip to main content
Log in

High Performance Supercapacitor Applications and DC Electrical Conductivity Retention on Surfactant Immobilized Macroporous Ternary Polypyrrole/Graphitic-C3N4@Graphene Nanocomposite

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Electrically conductive conducting polymer nanocomposites with carbonaceous materials have attraction the attention worldwide in resolving the energy crisis for economic reasons, ease of fabrication and easily controllable variable redox chemical states. In this work, highly conducting polypyrrole/g-C3N4@graphene (PPy/g-C3N4@GN) has been fabricated by polymerizing pyrrole with g-C3N4 along with surfactant para toluene sulfonic acid (pTSA) and later incorporating it with GN by hydrothermal methodology to form a macroporous network of pTSA doped PPy/g-C3N4@GN. Thus prepared PPy/g-C3N4@GN composite was characterized for the morphological characterizations by scanning electron microscopy, transmission electron microscopy while the structural characterizations were done by X-ray powder diffraction and X-ray photoelectron spectroscopy. The morphological analysis showed that the PPy and g-C3N4 were well distributed inside the GN sheets thereby forming structures of high porosity. The PPy and g-C3N4 were sandwiched between the sheets of GN and such morphology is expected to promote the electron transfer. The PPy/g-C3N4@GN composite showed high conductivity of 8.8 S/cm and exceptionally high thermal stability in aging thermal conductivity experiments. The high conductivity and stability is attributed to the contribution of following factors i.e. the high stability of g-C3N4, high conductivity of GN and PPy. Three electrode assembly was used to study the electrochemical supercapacitive characteristics; cyclic voltammetric curves and galvanostatic charge discharge measurements of PPy/g-C3N4@GN. The obtained nanocomposite delivered high capacitance of 260.4 F g−1 at a current load of 1 A g−1 as well as excellent 80% cyclic stability after the continuous 2000 charge discharge cycles. The enhanced performance is due the interaction between all the constituents in the present nanocomposites and improved electrical conductivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jang, G.S., Ameen, S., Akhtar, M.S., Shin, H.S.: Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44, 588–595 (2018)

    Article  Google Scholar 

  2. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  3. Liu, T., Shao, G., Ji, M., Wang, G.: Polyaniline/MnO2 composite with high performance as supercapacitor electrode via pulse electrodeposition. Polym. Compos. 36, 113–120 (2015)

    Article  Google Scholar 

  4. Feng, X.M., Chen, N., Zhang, Y., Yan, Z.Z., Liu, X.F., Ma, Y.W., Shen, Q.M., Wang, L.H., Huang, W.: The self-assembly of shape controlled functionalized graphene–MnO2 composites for application as supercapacitors. J. Mater. Chem. A 2, 9178–9184 (2014)

    Article  Google Scholar 

  5. Feng, X., Yan, Z., Chen, N., Zhang, Y., Liu, X., Ma, Y., Yang, X., Hou, W.: Synthesis of a graphene/polyaniline/MCM-41 nanocomposite and its application as a supercapacitor. New J. Chem. 37, 2203–2209 (2013)

    Article  Google Scholar 

  6. Parveen, N., Ansari, M.O., Cho, M.H.: Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance. RSC Adv. 5, 44920–44927 (2015)

    Article  Google Scholar 

  7. Mujawar, S.H., Ambade, S.B., Battumur, T., Ambade, R.B., Lee, S.H.: Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim. Acta 56, 4462–4466 (2011)

    Article  Google Scholar 

  8. Eftekhari, A., Li, L., Yang, Y.: Polyaniline supercapacitors. J. Power Sour. 347, 86–107 (2017)

    Article  Google Scholar 

  9. Yang, X., He, Y., Bai, Y., Zhang, J., Kang, L., Xu, H., Shi, F., Lei, Z., Liu, Z.H.: Mn3O4 nanocrystalline/graphene hybrid electrode with high capacitance. Electrochim. Acta 188, 398–405 (2016)

    Article  Google Scholar 

  10. Mondal, S.K., Barai, K., Munichandraiah, N.: High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate. Electrochim. Acta 52, 3258–3264 (2007)

    Article  Google Scholar 

  11. Zhang, Q., Zhou, A., Wang, J., Wu, J., Bai, H.: Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci. 10, 2372–2382 (2017)

    Article  Google Scholar 

  12. Yuksel, R., Alpugan, E., Unalan, H.E.: Coaxial silver nanowire/polypyrrole nanocomposite supercapacitors. Organ. Electron. 52, 272–280 (2018)

    Article  Google Scholar 

  13. Deng, W., Liang, X., Wu, X., Qian, J., Cao, Y., Ai, X., Feng, J., Yang, H.: A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013)

    Article  Google Scholar 

  14. Aphale, A., Maisuria, K., Mahapatra, M.K., Santiago, A., Singh, P., Patra, P.: Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors. Sci. Rep. 5, 14445 (2015)

    Article  Google Scholar 

  15. Li, Q., Xu, D., Guo, J., Ou, X., Yan, F.: Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon 124, 599–610 (2017)

    Article  Google Scholar 

  16. Chen, Q., Zhao, Y., Huang, X., Chen, N., Qu, L.: Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J. Mater. Chem. A 3, 6761–6766 (2015)

    Article  Google Scholar 

  17. Ansari, M.O., Mohammad, F.: Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sens. Actuat. B Chem. 157, 122–129 (2011)

    Article  Google Scholar 

  18. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Wei, L., Tour, J.M.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  Google Scholar 

  19. Kim, J.E., Han, T.H., Lee, S.H., Kim, J.Y., Ahn, C.W., Yun, J.M., Kim, S.O.: Graphene oxide liquid crystals. Angew. Chem. Int. Ed. 50, 3043–3047 (2011)

    Article  Google Scholar 

  20. Zhang, Y., Pan, Q., Chai, G., Liang, M., Dong, G., Zhang, Q., Qiu, J.: Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013)

    Article  Google Scholar 

  21. Kang, G., Borgens, R.B., Cho, Y.: Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 27, 6179–6184 (2011)

    Article  Google Scholar 

  22. Mishra, S.K., Tripathi, S.N., Choudhary, V., Gupta, B.D.: SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuat. B Chem. 199, 190–200 (2014)

    Article  Google Scholar 

  23. Fina, F., Callear, S.K., Carins, G.M., Irvine, J.T.S.: Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27, 2612–2618 (2015)

    Article  Google Scholar 

  24. Yang, F., Xu, M., Bao, S.J., Wei, H., Chai, H.: Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage. Electrochim. Acta 137, 381–387 (2014)

    Article  Google Scholar 

  25. Feng, X.M., Li, R.M., Ma, Y.W., Chen, R.F., Shi, N.E., Fan, Q.L., Huang, W.: One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv. Funct. Mater. 21, 2989–2996 (2011)

    Article  Google Scholar 

  26. Saoudi, B., Jammul, N., Chehimi, M.M., Jaubert, A.S., Arkam, C., Delamar, M.: XPS study of the adsorption mechanisms of DNA onto polypyrrole particles. Spectroscopy 18, 519–535 (2004)

    Article  Google Scholar 

  27. Fernández, M.J.C., Sierra, R.B., Blas, M.M.P., Soares, O.S.G.P., Pereira, M.F.R., Escribano, A.S.: Green synthesis of polypyrrole-supported metal catalysts: application to nitrate removal in water. RSC Adv. 5, 32706–32713 (2015)

    Article  Google Scholar 

  28. Yang, Y., Xi, Y., Li, J., Wei, G., Klyui, N.I., Han, W.: Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes. Nanoscale Res. Lett. 12, 394 (2017)

    Article  Google Scholar 

  29. Zhao, Q., Wang, X., Xia, H., Liu, J., Wang, H., Gao, J., Zhang, Y., Liu, J., Zhou, H., Li, X., Zhang, S., Wang, X.: Design, preparation and performance of novel three-dimensional hierarchically porous carbon for supercapacitors. Electrochim. Acta 173, 566–574 (2015)

    Article  Google Scholar 

  30. Ansari, M.O., Mohammad, F.: Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles-based nanocomposites. J. Appl. Polym. Sci. 124, 4433–4442 (2012)

    Google Scholar 

  31. Qu, Y., Lu, C., Su, Y., Cui, D., He, Y., Zhang, C., Cai, M., Zhang, F., Feng, X., Zhuang, X.: Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon 127, 77–84 (2018)

    Article  Google Scholar 

  32. Ansari, M.O., Yadav, S.K., Cho, J.W., Mohammad, F.: Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos. B Eng. 47, 155–161 (2013)

    Article  Google Scholar 

  33. Ansari, M.O., Khan, M.M., Ansari, S.A., Amal, I., Lee, J., Cho, M.H.: pTSA doped conducting graphene/polyaniline nanocomposite fibers: thermoelectric behavior and electrode analysis. Chem. Eng. J. 242, 155–161 (2014)

    Article  Google Scholar 

  34. Zhu, J., Chen, M., Qu, H., Zhang, X., Wei, H., Luo, Z., Colorado, H.A., Wei, S., Guo, Z.: Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 53, 5953–5964 (2012)

    Article  Google Scholar 

  35. Yunhe, X., Jun, L., Wenxin, H.: Porous graphene oxide prepared on nickel foam by electrophoretic deposition and thermal reduction as high-performance supercapacitor electrodes. Materials 10, 936 (2017)

    Article  Google Scholar 

  36. Jaidev, R.I., Jafri, A.K., Mishra, S.: Ramaprabhu, polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. J. Mater. Chem. 21, 17601–17605 (2011)

    Article  Google Scholar 

  37. Eeu, Y.C., Lim, H.N., Lim, Y.S., Zakarya, S.A., Huang, N.M.: Electrodeposition of polypyrrole/reduced graphene oxide/iron oxide nanocomposite as supercapacitor electrode material. J. Nanomater. 653890, 1–6 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-87-130-1438). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Omaish Ansari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahrie, A., Ansari, M.O. High Performance Supercapacitor Applications and DC Electrical Conductivity Retention on Surfactant Immobilized Macroporous Ternary Polypyrrole/Graphitic-C3N4@Graphene Nanocomposite. Electron. Mater. Lett. 15, 238–246 (2019). https://doi.org/10.1007/s13391-018-00107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-00107-6

Keywords

Navigation