Electronic Materials Letters

, Volume 15, Issue 2, pp 201–207 | Cite as

Reinforcement of Electromagnetic Wave Absorption Characteristics in PVDF-PMMA Nanocomposite by Intercalation of Carbon Nanofibers

  • Anam Naseer
  • Muhammad Mumtaz
  • Muhammad RaffiEmail author
  • Izhar Ahmad
  • Sabih D. Khan
  • Rana I. Shakoor
  • Shaista Shahzada
Original Article - Nanomaterials


With the recent developments in the millimeter and sub-millimeter wave instruments and devices, there is a need to develop electromagnetic (EM) wave absorbing materials in these frequency bands for applications like electromagnetic interference control, electromagnetic compatibility, etc. In this work, carbon nanofibers (CNF) were uniformly dispersed in a blend of poly(methyl methacrylate), polyvinylidene fluoride and cyanoacrylate for air spray coating a film on the cellulosic substrates. The samples were characterized for evaluation of their structure, morphology, electrical and EM absorption properties in 0.15–1.2 THz range by X-ray diffraction, field emission electron microscopy, I–V measurements and terahertz time domain spectroscopy. These coatings can conveniently be applied to the material surfaces by conventional air spray painting method, which makes this technique cost-effective as well as easy to deploy in various applications. The electrical conductivity enhancement in the samples has been attributed to the formation of conducting network by uniform distribution of CNFs in the insulating polymer matrix. As a result, the shielding effectiveness (SE) has been observed to improve with the increase in CNF’s loading in the polymer matrix. The SE is also a function of frequency, which is attributed to the increase in the skin depth. A SE of 20 dB has been estimated in these samples for the frequencies 1 THz and higher, which is of significant importance for the use of this technique in practical applications.

Graphical Abstract


Carbon nanofibers Polymer nanocomposites Electromagnetic interferences shielding Terahertz time domain spectroscopy 



The authors would like to sincerely thank and acknowledge the technical support extended by the Institute of Space Technology, International Islamic University, Islamabad and Pakistan Institute of Engineering and Applied Sciences, Islamabad for completion of this research work.


  1. 1.
    Lewis, R.A.: A review of terahertz sources. J. Phys. D Appl. Phys. 47, 37 (2014). CrossRefGoogle Scholar
  2. 2.
    IEEE Aerospace & Electronic Systems Society (AESS) Raday Systems Panel, “IEEE Standard for Letter Designations for Radar-Frequency Bands”, IEEE Std 521-2002(R2009) ISBN: 0-7381-3355-8 SH95016 (2002)Google Scholar
  3. 3.
    Johnston, S.L.: Modern k/sub a/-band/millimeter wave radar systems. In: Proceedings of International Conference on Millimeter Wave and Far-Infrared Technology, 1989 (ICMWFT ’89) (1989).
  4. 4.
    Prasad, B.S.V., Jahagirdar, D.R., Rani Surender, S., Gupta, N., Singh, V.K., Tayade, N., Sridhar Babu, K., Prasad, J.V., Sujatha, R., Borkar, V.G., Das, R.: Millimeter wave sensor for third generation antitank guided missiles and precision guided munitions. In: Proceedings of National Conference on “Advances in Sensors for Aerospace Applications” During 14–15 December 2007. (2007)
  5. 5.
    Hovanessian, S.A: Detection of stationary ground targets by airborne MMW radars. In: Millimeter Wave Technology III (1985).
  6. 6.
    Richards,M.A., Britt, P.P.: Millimeter wave seeker trade study and concept definition. Final technical report, contract V469-RA-459316, Georgia Institute of Technology, Engineering Experiment Station. ( (1984)
  7. 7.
    Johnston, S.L.: Millimeter wave meteorological radars. In: 15th International Conference on Infrared and Millimeter Waves (1990).
  8. 8.
    Gopalsami, N., Raptis, A.C.: Millimeter-wave radar sensing of airborne chemicals. IEEE Trans. Microw. Theory Tech. 49(4), 646–653 (2001). CrossRefGoogle Scholar
  9. 9.
    Clark, S., Durrant-Whyte, H.: Autonomous land vehicle navigation using millimeter wave radar. In: Proceedings of IEEE International Conference on Robotics and Automation, 1998 (1998).
  10. 10.
    McMillan, R.W.: Terahertz imaging, millimeter-wave radar. Adv. Sens. Secur. Appl. (2006). Google Scholar
  11. 11.
    Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013). CrossRefGoogle Scholar
  12. 12.
    Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011). CrossRefGoogle Scholar
  13. 13.
    Law, D.: Active denial technology (ADT). Presented at Non-Lethal Weapons Research and Technology Development Industry Day on 22 June 2012. (2012)
  14. 14.
    LeVine, S.: The active denial system a revolutionary, non-lethal weapon for today’s battlefield. A report by Center for Technology and National Security Policy at National Defense University. (2009)
  15. 15.
    Liu, L., Das, A., Megaridis, C.M.: Terahertz shielding of carbon nanomaterials and their composites—a review and applications. Carbon 69, 43116 (2014). Google Scholar
  16. 16.
    Al-Saleh, M.H., Sundararaj, U.: Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol. Mater. Eng. 293(7), 621–630 (2008). CrossRefGoogle Scholar
  17. 17.
    Xu, Y., et al.: Spray coating of polymer electret with polystyrene nanoparticles for electrostatic energy harvesting. IET Micro Nano Lett. 11(10), 640–644 (2016). CrossRefGoogle Scholar
  18. 18.
    Sharma, M., Sharma, K., Bose, S.: Segmental relaxations and crystallization-induced phase separation in PVDF/PMMA blends in the presence of surface-functionalized multiwall carbon nanotubes. J. Phys. Chem. B 117(28), 8589–8602 (2013). CrossRefGoogle Scholar
  19. 19.
    Baker, A.M., Wang, L., Advani, S.G., Prasad, A.K.: Nafion membranes reinforced with magnetically controlled Fe3O4-MWCNTs for PEMFCs. J. Mater. Chem. 22, 28 (2012). CrossRefGoogle Scholar
  20. 20.
    Lund, A., Gustafsson, C., Bertilsson, H., Rychwalski, R.W.: Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos. Sci. Technol. 71(2), 222–229 (2011). CrossRefGoogle Scholar
  21. 21.
    Elashmawi, I.S., Hakeem, N.A.: Effect of PMMA addition on characterization and morphology of PVDF. Polym. Eng. Sci. 48(5), 895–901 (2008). CrossRefGoogle Scholar
  22. 22.
    Eswaraiah, V., Sankaranarayanan, V., Mishra, A.K., Ramaprabhu, S.: Electromagnetic interference (EMI) shielding of carbon nanostrcutured films. In: 2010 International Conference on Chemistry and Chemical Engineering (2010).
  23. 23.
    Yuen, S.-M., Ma, C.-C.M., Chuang, C.-Y., Kuo-Chi, Yu., Sheng-Yen, W., Yang, C.-C., Wei, M.-H.: Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites. Compos. Sci. Technol. 68(43163), 963–968 (2008). CrossRefGoogle Scholar
  24. 24.
    Park, S.J., Cho, M.S., Lim, S.T., Choi, H.J., Jhon, M.S.: Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol. Rapid Commun. 24(18), 1070–1073 (2003). CrossRefGoogle Scholar
  25. 25.
    Zou, G., Zhang, D., Dong, C., Li, H., Xiong, K., Fei, L., Qian, Y.: Carbon nanofibers: synthesis, characterization, and electrochemical properties. Carbon 44(5), 828–832 (2006). CrossRefGoogle Scholar
  26. 26.
    Mumtaz, M., Mahmood, A., Khan, S.D., Aslam Zia, M., Ahmed, M., Ahmad, I.: Investigation of dielectric properties of polymers and their discrimination using terahertz time-domain spectroscopy with principal component analysis. Appl. Spectrosc. 71(3), 456–462 (2016). CrossRefGoogle Scholar
  27. 27.
    Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing (1998).
  28. 28.
    Schurmann, U., Hartung, W., Takele, H., Zaporojtchenko, V., Faupel, F.: Controlled syntheses of Ag–polytetrafluoroethylene nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16(8), 1078–1082 (2005). CrossRefGoogle Scholar
  29. 29.
    Polley, D., Ganguly, A., Barman, A., Mitra, R.K.: Polarizing effect of aligned nanoparticles in terahertz frequency region. Opt. Lett. (2013). Google Scholar
  30. 30.
    Polley, D., Barman, A., Mitra, R.K.: EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency. Opt. Lett. (2014). Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Anam Naseer
    • 2
  • Muhammad Mumtaz
    • 1
  • Muhammad Raffi
    • 1
    Email author
  • Izhar Ahmad
    • 1
  • Sabih D. Khan
    • 1
  • Rana I. Shakoor
    • 3
  • Shaista Shahzada
    • 2
  1. 1.Department of Materials EngineeringNational Institute of Lasers and Optronics (NILOP)IslamabadPakistan
  2. 2.Department of PhysicsInternational Islamic UniversityIslamabadPakistan
  3. 3.Department of Mechatronics EngineeringAir UniversityIslamabadPakistan

Personalised recommendations