Electronic Materials Letters

, Volume 14, Issue 2, pp 161–172 | Cite as

Selective Sensing of Methanol by Poly(m-aminophenol)/Copper Nanocomposite

  • Madhusmita Bhuyan
  • Siddhartha Samanta
  • Pradip Kar
Article
  • 50 Downloads

Abstract

The nanocomposite film of conducting poly(m-aminophenol) with copper nanoparticles (PmAP/Cu) prepared by a single-step process has been demonstrated as the sensor material for selective detection of methanol vapor. Different techniques like Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to evaluate the interfacial interactions between PmAP and Cu nanoparticles within their conducting nanocomposites. The induced doping interaction through fluctuating electrostatic charge transfer between free –OH groups of the PmAP and Cu nanoparticles was confirmed from the spectral characterizations. About 3 wt% of Cu nanoparticles having average size of around 30–50 nm confirmed by the SEM and TEM analysis, was optimized inside the PmAP matrix in terms of better dispersion as well as achieving the highest conductivity (1.05 × 10−6 S/cm). The sensing performances, viz., % response, response time, recovery time, selectivity and reproducibility of the nanocomposites were studied towards methanol vapor at different concentrations. The mechanism of selective methanol vapor sensing by PmAP/Cu nanocomposite film has been explained on the basis of selective dipole interaction characterized by zeta potential measurement.

Graphical Abstract

Keywords

Chemical sensor Polyaminophenol Metal nanocomposite Methanol sensor Conducting polymer nanocomposite 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by the BIT, Mesra Ranchi for this work inform of Institute Master’s Project. The authors also thankful to IIT, Bombey, India for sample analysis.

References

  1. 1.
    Jososwiz, M., Jantana, J.: Chemical Sensor Technology, p. 153. Elsevier, Amsterdam (1988)Google Scholar
  2. 2.
    Adhikari, B., Kar, P.: Chemical Sensors, vol. 3, p. 1. Momentum Press LLC, NJ (2010)Google Scholar
  3. 3.
    Kar, P., Choudhury, A., Verma, S.K.: Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, p. 621. Wiley-Scrivener, NJ (2015)Google Scholar
  4. 4.
    Bartlett, P.N., Ling-chung, S.K.: Conducting polymer gas sensors. II. Response of polypyrrole to methanol vapour. Sensor. Actuator. 19, 141 (1989)CrossRefGoogle Scholar
  5. 5.
    Blackwood, D., Jososwiz, M.: Work function and spectroscopic studies of interactions between conducting polymers and organic vapors. J. Phys. Chem-US. 95, 493 (1991)CrossRefGoogle Scholar
  6. 6.
    Inzelt, G.: Applications of Conducting Polymers, p. 225. Springer, Berlin (2008)Google Scholar
  7. 7.
    Debarnot, D.N., Epaillard, F.P.: Polyaniline as a newsensitive layer for gas sensors. Anal. Chim. Acta 475, 1 (2003)CrossRefGoogle Scholar
  8. 8.
    Negi, Y.S., Adhyapak, P.V.: Development in polyaniline conducting polymers. Polym. Rev. 42, 35 (2002)Google Scholar
  9. 9.
    Syed, A.A., Dinesan, M.K.: Review: polyaniline: a novel polymeric material. Talanta 38, 815 (1991)CrossRefGoogle Scholar
  10. 10.
    Gardner, J.W., Bartlett, P.N.: A brief history of electronic noses. Sensor. Actuat. B-Chem. 18–19, 211 (1994)Google Scholar
  11. 11.
    Gardner, J.W., Bartlett, P.N.: Electronic Noses, p. 78. Oxford University Press, London (1999)Google Scholar
  12. 12.
    Andrews, L.S., Clary, J.J., Terrill, J.B., Bolte, H.F.: Subchronic inhalation toxicity of methanol. J. Toxicol. Env. Health 20, 117 (1987)CrossRefGoogle Scholar
  13. 13.
    Athawale, A.A., Kulkarni, M.V.: Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sensor. Actuat. B-Chem. 67, 173 (2000)CrossRefGoogle Scholar
  14. 14.
    Athawale, A.A., Bhagwat, S.V., Katre, P.P.: Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensor. Actuat. B-Chem. 114, 263 (2006)CrossRefGoogle Scholar
  15. 15.
    Jiang, L., Jun, H.K., Hoh, Y.S., Lim, J.O., Lee, D.D., Huh, J.S.: Sensing characteristics of polypyrrole–poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization. Sensor. Actuat. B-Chem. 105, 132 (2005)CrossRefGoogle Scholar
  16. 16.
    de Melo, C.P., Neto, B.B., de Lima, E.G., de Lira, L.F.B., de Souza, J.E.G.: Use of conducting polyoyrrole blends as gas sensors. Sensor. Actuat. B-Chem. 109, 348 (2005)CrossRefGoogle Scholar
  17. 17.
    Kar, P., Pradhan, N.C., Adhikari, B.: Application of sulfuric acid doped poly (m-aminophenol) as aliphatic alcohol vapor sensor material. Sensor. Actuat. B-Chem. 140, 525 (2009)CrossRefGoogle Scholar
  18. 18.
    Verma, S.K., Kar, P., Yang, D.J., Choudhury, A.: Poly (m-aminophenol)/functionalized multi-walled carbon nanotube nanocomposite based alcohol sensors. Sensor. Actuat. B-Chem. 219, 199 (2015)CrossRefGoogle Scholar
  19. 19.
    Kar, P., Pradhan, N.C., Adhikari, B.: A novel route for the synthesis of processable conducting poly (m-aminophenol). Mater. Chem. Phys. 111, 59 (2008)CrossRefGoogle Scholar
  20. 20.
    Kar, P., Pradhan, N.C., Adhikari, B.: Doping of processable conducting poly(m-aminophenol) with silver nanoparticles. Polym. Advan. Technol. 22, 1060 (2011)CrossRefGoogle Scholar
  21. 21.
    Kar, P., Pradhan, N.C., Adhikari, B.: Ammonia sensing by hydrochloric acid doped poly (m-aminophenol)–silver nanocomposite. J. Mater. Sci. 46, 2905 (2011)CrossRefGoogle Scholar
  22. 22.
    Lee, J., Choi, J., Hong, J., Jung, D., Shim, S.E.: Conductive silicone/acetylene black composite film as a chemical vapor sensor. Synthetic. Met. 160, 1030 (2010)CrossRefGoogle Scholar
  23. 23.
    Schroder, D.K.: Semiconductor Material and Device Characterization, p. 2. Wiley, New York (1990)Google Scholar
  24. 24.
    Riddick, J., Bunger, A.: Techniques of Chemistry, vol. 2, p. 904. Wiley, New York (1986)Google Scholar
  25. 25.
    Firth, A.V., Haggata, S.W., Khanna, P.K., Williams, S.J., Allen, J.W., Magennis, S.W., Samuel, I.D.W., Cole-Hamilton, J.: Production and luminescent properties of CdSe and CdS nanoparticle–polymer composites. J. Lumin. 109, 163 (2004)CrossRefGoogle Scholar
  26. 26.
    Pearce, T.C., Schiffman, S.S., Nagle, H.T., Grander, J.W. (eds.): Handbook of Machine Olfaction, p. 1. Wiley, Weinheim (2003)Google Scholar
  27. 27.
    Niasari, M.S., Fereshteh, Z., Davar, F.: Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28, 126 (2009)CrossRefGoogle Scholar
  28. 28.
    Kar, P.: Doping in Conjugated Polymers, p. 1. Wiley-Scrivener, NJ (2013)CrossRefGoogle Scholar
  29. 29.
    Choudhury, A., Kar, P., Mukherjee, M., Adhikari, B.: Polyaniline/silver nanocomposite based acetone vapour sensor. Sens. Lett. 7, 592 (2009)CrossRefGoogle Scholar
  30. 30.
    Kar, P., Mishra, A.: The role of polyvinyl alcohol in one-step chemical synthesis of water based copper nanofluid. Nanosci. Nanotech. Let. 5, 935 (2013)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Madhusmita Bhuyan
    • 1
  • Siddhartha Samanta
    • 1
  • Pradip Kar
    • 1
  1. 1.Department of ChemistryBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations