Subordinating results for p-valent functions associated with the Srivastava–Saigo–Owa fractional differintegral operator

Article
  • 26 Downloads

Abstract

In this paper, by making use of the principle of subordination, we investigate some subordination and convolution properties of certain subclasses of\(\ p\)-valent analytic functions which are defined by the Srivastava–Saigo–Owa fractional differintegral operator.

Keywords

Differential subordination p-valent functions Srivastava–Saigo–Owa fractional differintegral operator 

Mathematics Subject Classification

30C45 30C50 

References

  1. 1.
    Al-Oboudi, F.M.: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 27, 1429–1436 (2004)CrossRefMATHGoogle Scholar
  2. 2.
    Aouf, M.K.: Certain subclasses of multivalent prestarlike functions with negative coefficients. Demonstratio Math. 40(4), 799–814 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Aouf, M.K., Mostafa, A.O.: On a subclass of \(n-p-\)valent prestarlike functions. Comput. Math. Appl. 55, 851–861 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aouf, M.K., Mostafa, A.O., Zayed, H.M.: Some characterizations of integral operators associated with certain classes of p-valent functions defined by the Srivastava–Saigo–Owa fractional differintegral operator. Complex Anal. Oper. Theory 10(6), 1267–1275 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aouf, M.K., Mostafa, A.O., Zayed, H.M.: Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator. Quaest. Math. 39(4), 545–560 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aouf, M.K., Mostafa, A.O., Zayed, H.M.: On certain subclasses of multivalent functions defined by a generalized fractional differintegral operator. Afr. Mat. 28(1–2), 99–107 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bulboacă, T.: Differential Subordinations and Superordinations, Recent Results. House of Scientific Book Publ, Cluj-Napoca (2005)Google Scholar
  8. 8.
    Choi, J.H., Saigo, M., Srivastava, H.M.: Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 276(1), 432–445 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Goyal, S.P., Prajapat, J.K.: A new class of analytic \(p\)-valent functions with negative coefficients and fractional calculus operators. Tamsui Oxford Univ. J. Math. Sci. 20(2), 175–186 (2004)MathSciNetGoogle Scholar
  10. 10.
    Hallenbeck, D.Z., Ruscheweyh, St: Subordination by convex functions. Proc. Am. Math. Soc. 52, 191–195 (1975)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kamali, M., Orhan, H.: On a subclass of certian starlike functions with negative coefficients. Bull. Korean Math. Soc. 41(1), 53–71 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    MacGregor, T.H.: Radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 14, 514–520 (1963)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Miller, S.S., Mocanu, P.T.: Differential subordinations and univalent functions. Michigan Math. J. 28(2), 157–171 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Miller, S.S., Mocanu, P.T.: Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel (2000)Google Scholar
  15. 15.
    Mostafa, A.O., Aouf, M.K., Zayed, H. M.: Inclusion relations for subclasses of multivalent functions defined by Srivastava–Saigo–Owa fractional differintegral operator. Afr. Mat. (to appear) Google Scholar
  16. 16.
    Mostafa, A.O., Aouf, M.K., Zayed, H. M, Bulboacă, T.: Multivalent functions associated with Srivastava–Saigo–Owa fractional differintegral operator. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM.  https://doi.org/10.1007/s13398-017-0436-1 (to appear)
  17. 17.
    Owa, S.: On the distortion theorems. I. Kyungpook Math. J. 18, 53–59 (1978)MathSciNetMATHGoogle Scholar
  18. 18.
    Patel, J.: Radii of \(\gamma \)-spirallikeness of certain analytic functions. J. Math. Phys. Sci. 27, 321–334 (1993)MathSciNetGoogle Scholar
  19. 19.
    Pommerenke, Ch.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)MATHGoogle Scholar
  20. 20.
    Prajapat, J.K., Raina, R.K., Srivastava, H.M.: Some inclusion properties for certain subclasses of strongly starlike and strongly convex functions involving a family of fractional integral operators. Integral Transform. Spec. Funct. 18(9), 639–651 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sălăgean, G. S.: Subclasses of univalent functions, Complex Analysis—Fifth Romanian Finnish Seminar, Part 1 (Bucharest, 1981), pp. 362–372, Lecture Notes in Math. 1013 Springer, BerlinGoogle Scholar
  22. 22.
    Srivastava, H.M., Saigo, M., Owa, S.: A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 131, 412–420 (1988)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Stankiewicz, J., Stankiewicz, Z.: Some applications of Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 40, 251–265 (1986)MathSciNetMATHGoogle Scholar
  24. 24.
    Tang, H., Deng, G.-T., Li, S.-H., Aouf, M.K.: Inclusion results for certain subclasses of spiral-like multivalent functions involving a generalized fractional differintegral operator. Integral Transform. Spec. Funct. 24(11), 873–883 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Mathematics, Faculty of ScienceMenofia UniversityShebin ElkomEgypt

Personalised recommendations