Afrika Matematika

, Volume 29, Issue 3–4, pp 531–555

# A new collocation formulation for the block Falkner-type methods with trigonometric coefficients for oscillatory second order ordinary differential equations

Article

## Abstract

We consider a new class of modified block Falkner methods for the direct numerical integration of second-order initial value problems having periodic and oscillatory solutions. We will give a new collocation formulation different from that of Ramos et al. (J Comput Appl Math. , 2016) for the coefficients of a modified block Falkner-type methods, which are frequency dependent. We give an example using our new approach to derive a practical method. Furthermore, the uniform general order conditions and the investigation of the stability properties are presented. Numerical experiments are carried out to illustrate the high effectiveness of the new methods compared with some recent methods in the literature.

## Keywords

Collocation formulation Falkner-type methods Oscillatory second order initial-value Falkner type methods Block multistep methods

65L05 65L06

## References

1. 1.
Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach, Amsterdam (1998)
2. 2.
Butcher, J.C.: Numerical Methods for Ordinary Differetial Equations. Wiley, England (2003)
3. 3.
Chen, Z., Qiu, Z., Li, J., You, X.: Two-derivative Runge–Kutta–Nyström methods for second-order ordinary differential equations. Numer. Algorithm.
4. 4.
Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1966)Google Scholar
5. 5.
Coleman, J.P.: Numerical methods for $$y^{\prime \prime }=f(x, y)$$ via rational approximations for the cosine. IMA J. Numer. Anal. 9, 145–165 (1989)
6. 6.
Coleman, J.P., Ixaru, L.G.: P-stability and exponential fitting methods for $$y^{\prime \prime }=f(x, y)$$. IMA J. Numer. Anal. 16, 179–199 (1996)
7. 7.
Coleman, J.P.: Mixed interpolation methods with arbitrary nodes. J. Comput. Appl. Math. 92(1), 69–83 (1998)
8. 8.
Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for $$y^{\prime \prime }=f(x, y)$$. J. Comput. Appl. Math. 126, 47–75 (2000)
9. 9.
Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41, 55–63 (1991)
10. 10.
Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)
11. 11.
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Non Stiff Problems, 2nd edn. Springer, Berlin (1993)
12. 12.
Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Intergrator-Structure preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)
13. 13.
Ixaru, Gr, L., Berghe, G.Vanden, De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)
14. 14.
Ixaru, Gr, L., Berghe, G.Vanden: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)
15. 15.
Jator, S. N., Swindle, S., French, R.: Trigonometrically fitted block Numerov type method for $$y^{\prime \prime }=f(x,y,y^{\prime })$$. Numer. Algorithm 38(4), (2012).
16. 16.
Krogh, F.T.: Issues in the Design of a Multistep Code. JPL Technical Report (1993). http://hdl.handle.net/2014/34958
17. 17.
Lie, I., Norsett, S.P.: Superconvergence for multistep collocation. Math. Comput. 52, 65–79 (1989)
18. 18.
Li, J., Wu, X.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algorithm. 62, 355–381 (2013)
19. 19.
Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, Amsterdam (1973)
20. 20.
Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)
21. 21.
Ngwane, F.F., Jator, S.N.: Block hybrid method using trigonometric basis for initial value problems with oscillating solutions. Numer. Algorithm 63(4), 713C725 (2013)
22. 22.
Ngwane, F.F., Jator, S.N.: A trigonometrically fitted block method for Solving Oscillatory second-order initial value problems and Hamiltonian systems. International of Differential Equations, Volume 2017, Article ID 9293530, p. 14Google Scholar
23. 23.
Nguyen, H.S., Sidje, R.B., Cong, N.H.: Analysis of trigonometrically fitted implicit Runge–Kutta methods. J. Comput. Appl. Math. 198, 187–207 (2007)
24. 24.
Nyström, E.J.: Ueber die numerische Integration von Differentialgleichungen. Acta Soc. Sci. Fenn. 50, 1–54 (1925)Google Scholar
25. 25.
Ozawa, K.: A four-stage implicit Runge–Kutta–Nystrom method with variable coefficients for solving periodic initial value problems. Jpn. J. Ind. Appl. Math. 16, 2546 (1999)
26. 26.
Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183, 2499–2512 (2012)
27. 27.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flan- nery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)
28. 28.
Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order I.V.P.s. Comput. Phys. Commun. 181, 1833–1841 (2010)
29. 29.
Ramos, H., Mehta, A., Vigo-Aguiar, J.: A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J. Comput. Appl. Math. (2016).
30. 30.
Shampine, L.F., Watts, H.A.: Block implicit one-step methods. Math. Comput. 23, 731–40 (1969)
31. 31.
Vanden, B.G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge–Kutta methods. Comp. Phys. Commun. 123, 7–15 (1999)
32. 32.
Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for $$y^{\prime \prime } = f (x, y, y^{\prime })$$. J. Comput. Appl. Math. 192, 114–131 (2006)
33. 33.
Van de Vyver, Hans: Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184, 442–463 (2005)
34. 34.
Vigo-Aguiar, Jesùs, Ramos, Higinio: On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)
35. 35.
Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16(1), 151–181 (2016)
36. 36.
Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc., New York (1965)
37. 37.
You, X., Zhao, J., Yang, H., Fang, Y., Wu, X.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algorithm 66, 147–176 (2014)