Skip to main content
Log in

A new collocation formulation for the block Falkner-type methods with trigonometric coefficients for oscillatory second order ordinary differential equations

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

We consider a new class of modified block Falkner methods for the direct numerical integration of second-order initial value problems having periodic and oscillatory solutions. We will give a new collocation formulation different from that of Ramos et al. (J Comput Appl Math. https://doi.org/10.1016/j.cam.2015.12.018, 2016) for the coefficients of a modified block Falkner-type methods, which are frequency dependent. We give an example using our new approach to derive a practical method. Furthermore, the uniform general order conditions and the investigation of the stability properties are presented. Numerical experiments are carried out to illustrate the high effectiveness of the new methods compared with some recent methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach, Amsterdam (1998)

    MATH  Google Scholar 

  2. Butcher, J.C.: Numerical Methods for Ordinary Differetial Equations. Wiley, England (2003)

    Book  Google Scholar 

  3. Chen, Z., Qiu, Z., Li, J., You, X.: Two-derivative Runge–Kutta–Nyström methods for second-order ordinary differential equations. Numer. Algorithm. https://doi.org/10.1007/s11075-015-9979-4

  4. Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1966)

    Google Scholar 

  5. Coleman, J.P.: Numerical methods for \(y^{\prime \prime }=f(x, y)\) via rational approximations for the cosine. IMA J. Numer. Anal. 9, 145–165 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coleman, J.P., Ixaru, L.G.: P-stability and exponential fitting methods for \(y^{\prime \prime }=f(x, y)\). IMA J. Numer. Anal. 16, 179–199 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coleman, J.P.: Mixed interpolation methods with arbitrary nodes. J. Comput. Appl. Math. 92(1), 69–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 126, 47–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41, 55–63 (1991)

    Article  MATH  Google Scholar 

  10. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Non Stiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Intergrator-Structure preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Ixaru, Gr, L., Berghe, G.Vanden, De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ixaru, Gr, L., Berghe, G.Vanden: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  15. Jator, S. N., Swindle, S., French, R.: Trigonometrically fitted block Numerov type method for \(y^{\prime \prime }=f(x,y,y^{\prime })\). Numer. Algorithm 38(4), (2012). https://doi.org/10.1007/s11075-012-9562-1

  16. Krogh, F.T.: Issues in the Design of a Multistep Code. JPL Technical Report (1993). http://hdl.handle.net/2014/34958

  17. Lie, I., Norsett, S.P.: Superconvergence for multistep collocation. Math. Comput. 52, 65–79 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J., Wu, X.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algorithm. 62, 355–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, Amsterdam (1973)

    MATH  Google Scholar 

  20. Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ngwane, F.F., Jator, S.N.: Block hybrid method using trigonometric basis for initial value problems with oscillating solutions. Numer. Algorithm 63(4), 713C725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ngwane, F.F., Jator, S.N.: A trigonometrically fitted block method for Solving Oscillatory second-order initial value problems and Hamiltonian systems. International of Differential Equations, Volume 2017, Article ID 9293530, p. 14

  23. Nguyen, H.S., Sidje, R.B., Cong, N.H.: Analysis of trigonometrically fitted implicit Runge–Kutta methods. J. Comput. Appl. Math. 198, 187–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nyström, E.J.: Ueber die numerische Integration von Differentialgleichungen. Acta Soc. Sci. Fenn. 50, 1–54 (1925)

    Google Scholar 

  25. Ozawa, K.: A four-stage implicit Runge–Kutta–Nystrom method with variable coefficients for solving periodic initial value problems. Jpn. J. Ind. Appl. Math. 16, 2546 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183, 2499–2512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flan- nery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  28. Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order I.V.P.s. Comput. Phys. Commun. 181, 1833–1841 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramos, H., Mehta, A., Vigo-Aguiar, J.: A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J. Comput. Appl. Math. (2016). https://doi.org/10.1016/j.cam.2015.12.018

  30. Shampine, L.F., Watts, H.A.: Block implicit one-step methods. Math. Comput. 23, 731–40 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vanden, B.G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge–Kutta methods. Comp. Phys. Commun. 123, 7–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for \(y^{\prime \prime } = f (x, y, y^{\prime })\). J. Comput. Appl. Math. 192, 114–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Van de Vyver, Hans: Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184, 442–463 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vigo-Aguiar, Jesùs, Ramos, Higinio: On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16(1), 151–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc., New York (1965)

    MATH  Google Scholar 

  37. You, X., Zhao, J., Yang, H., Fang, Y., Wu, X.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algorithm 66, 147–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Ehigie.

Appendix

Appendix

(61)
$$\begin{aligned} B=\left( \begin{array}{cccccccccccc} 0 &{}\quad 0 &{} \quad \ldots &{}\quad 0 &{}\quad 0 &{}\quad -z^2\beta _{1-k}(\nu ) &{}\quad 0 &{}\quad 0 &{}\quad \dots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \ldots &{}\quad 0 &{}\quad 0 &{}\quad -z^2\beta _{1-k}^{(1)}(\nu ) &{}\quad 0 &{} \quad 0 &{} \quad \dots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \ldots &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ 0 &{}\quad 0 &{}\quad \ldots &{}\quad 0 &{} \quad 0 &{}\quad -z^2\beta _{1-k}^{(k-3)}(\nu ) &{}\quad 0 &{} \quad 0 &{} \quad \dots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \ldots &{}\quad 0 &{}\quad 0 &{}\quad -z^2\beta _{1-k}^{(k-2)}(\nu ) &{}\quad 0 &{} \quad 0 &{}\quad \dots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \ldots &{} \quad 0 &{}\quad 0 &{}\quad -1-z^2\beta _{1-k}^{(k-1)}(\nu ) &{} \quad 0 &{}\quad 0 &{}\quad \dots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \ldots &{}\quad 0 &{}\quad 0 &{}\quad -z^2\gamma _{1-k}(\nu ) &{} \quad 0 &{}\quad 0 &{} \quad \dots &{}\quad 0 &{}\quad 0 &{} \quad 0 \\ 0 &{}\quad 0 &{} \quad \ldots &{}\quad 0 &{} \quad 0 &{} \quad -z^2\gamma _{1-k}^{(1)}(\nu ) &{} \quad 0 &{} \quad 0 &{} \quad \dots &{} \quad 0 &{}\quad 0 &{}\quad 0 \\ \ldots &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ 0 &{}\quad 0 &{}\quad \ldots &{}\quad 0 &{} \quad 0 &{}\quad -z^2\gamma _{1-k}^{(k-2)}(\nu ) &{} \quad 0 &{} \quad 0 &{} \quad \dots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{} \quad \ldots &{}\quad 0 &{}\quad 0 &{} \quad -z^2\gamma _{1-k}^{(k-1)}(\nu ) &{}\quad 0 &{} \quad 0 &{} \quad \dots &{}\quad 0 &{}\quad 0 &{}\quad -1 \\ \end{array} \right) \end{aligned}$$
(62)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehigie, J.O., Okunuga, S.A. A new collocation formulation for the block Falkner-type methods with trigonometric coefficients for oscillatory second order ordinary differential equations. Afr. Mat. 29, 531–555 (2018). https://doi.org/10.1007/s13370-018-0558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-018-0558-4

Keywords

Mathematics Subject Classification

Navigation