Afrika Matematika

, Volume 29, Issue 3–4, pp 531–555 | Cite as

A new collocation formulation for the block Falkner-type methods with trigonometric coefficients for oscillatory second order ordinary differential equations



We consider a new class of modified block Falkner methods for the direct numerical integration of second-order initial value problems having periodic and oscillatory solutions. We will give a new collocation formulation different from that of Ramos et al. (J Comput Appl Math., 2016) for the coefficients of a modified block Falkner-type methods, which are frequency dependent. We give an example using our new approach to derive a practical method. Furthermore, the uniform general order conditions and the investigation of the stability properties are presented. Numerical experiments are carried out to illustrate the high effectiveness of the new methods compared with some recent methods in the literature.


Collocation formulation Falkner-type methods Oscillatory second order initial-value Falkner type methods Block multistep methods 

Mathematics Subject Classification

65L05 65L06 


  1. 1.
    Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach, Amsterdam (1998)MATHGoogle Scholar
  2. 2.
    Butcher, J.C.: Numerical Methods for Ordinary Differetial Equations. Wiley, England (2003)CrossRefGoogle Scholar
  3. 3.
    Chen, Z., Qiu, Z., Li, J., You, X.: Two-derivative Runge–Kutta–Nyström methods for second-order ordinary differential equations. Numer. Algorithm.
  4. 4.
    Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1966)Google Scholar
  5. 5.
    Coleman, J.P.: Numerical methods for \(y^{\prime \prime }=f(x, y)\) via rational approximations for the cosine. IMA J. Numer. Anal. 9, 145–165 (1989)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Coleman, J.P., Ixaru, L.G.: P-stability and exponential fitting methods for \(y^{\prime \prime }=f(x, y)\). IMA J. Numer. Anal. 16, 179–199 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Coleman, J.P.: Mixed interpolation methods with arbitrary nodes. J. Comput. Appl. Math. 92(1), 69–83 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 126, 47–75 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41, 55–63 (1991)CrossRefMATHGoogle Scholar
  10. 10.
    Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Non Stiff Problems, 2nd edn. Springer, Berlin (1993)MATHGoogle Scholar
  12. 12.
    Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Intergrator-Structure preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)MATHGoogle Scholar
  13. 13.
    Ixaru, Gr, L., Berghe, G.Vanden, De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ixaru, Gr, L., Berghe, G.Vanden: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Jator, S. N., Swindle, S., French, R.: Trigonometrically fitted block Numerov type method for \(y^{\prime \prime }=f(x,y,y^{\prime })\). Numer. Algorithm 38(4), (2012).
  16. 16.
    Krogh, F.T.: Issues in the Design of a Multistep Code. JPL Technical Report (1993).
  17. 17.
    Lie, I., Norsett, S.P.: Superconvergence for multistep collocation. Math. Comput. 52, 65–79 (1989)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Li, J., Wu, X.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algorithm. 62, 355–381 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, Amsterdam (1973)MATHGoogle Scholar
  20. 20.
    Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ngwane, F.F., Jator, S.N.: Block hybrid method using trigonometric basis for initial value problems with oscillating solutions. Numer. Algorithm 63(4), 713C725 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ngwane, F.F., Jator, S.N.: A trigonometrically fitted block method for Solving Oscillatory second-order initial value problems and Hamiltonian systems. International of Differential Equations, Volume 2017, Article ID 9293530, p. 14Google Scholar
  23. 23.
    Nguyen, H.S., Sidje, R.B., Cong, N.H.: Analysis of trigonometrically fitted implicit Runge–Kutta methods. J. Comput. Appl. Math. 198, 187–207 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Nyström, E.J.: Ueber die numerische Integration von Differentialgleichungen. Acta Soc. Sci. Fenn. 50, 1–54 (1925)Google Scholar
  25. 25.
    Ozawa, K.: A four-stage implicit Runge–Kutta–Nystrom method with variable coefficients for solving periodic initial value problems. Jpn. J. Ind. Appl. Math. 16, 2546 (1999)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183, 2499–2512 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flan- nery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)MATHGoogle Scholar
  28. 28.
    Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order I.V.P.s. Comput. Phys. Commun. 181, 1833–1841 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Ramos, H., Mehta, A., Vigo-Aguiar, J.: A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J. Comput. Appl. Math. (2016).
  30. 30.
    Shampine, L.F., Watts, H.A.: Block implicit one-step methods. Math. Comput. 23, 731–40 (1969)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Vanden, B.G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge–Kutta methods. Comp. Phys. Commun. 123, 7–15 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for \(y^{\prime \prime } = f (x, y, y^{\prime })\). J. Comput. Appl. Math. 192, 114–131 (2006)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Van de Vyver, Hans: Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184, 442–463 (2005)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Vigo-Aguiar, Jesùs, Ramos, Higinio: On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16(1), 151–181 (2016)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc., New York (1965)MATHGoogle Scholar
  37. 37.
    You, X., Zhao, J., Yang, H., Fang, Y., Wu, X.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algorithm 66, 147–176 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.Department of MathematicsUniversity of LagosLagosNigeria

Personalised recommendations