Advertisement

Afrika Matematika

, Volume 29, Issue 1–2, pp 263–275 | Cite as

A note on automorphisms of finite B-algebras

Article
  • 46 Downloads

Abstract

In this paper, we introduce the notion of a central B-automorphism of a finite B-algebra. Also some properties of a finite B-algebra and B-automorphism algebra are investigated.

Keywords

B-algebra Normal subalgebra B-algebra homomorphism 0-commutative 

Mathematics Subject Classification

Primary 06F35 03G25 16B70 

Notes

Acknowledgements

The author wish to thank the reviewers for their excellent suggestions and comments that have been incorporated into this paper. This research was financially supported by the University of Payame Noor.

References

  1. 1.
    Allen, P.J., Neggers, J., Kim, H.S.: \(B\)-algebras and groups. Sci. Math. Japonicae 9, 159–165 (2003)MATHGoogle Scholar
  2. 2.
    Al-Shehri, N.O.: On \(\text{ Hom }(-, -)\) as \(B\)-algebras. JP J. Algebra Num. Theory Appl. 18(1), 17–24 (2010)MathSciNetMATHGoogle Scholar
  3. 3.
    Ameri, R., Borumand Saied, A., Nematolah Zadeh, S.A., Radfar, A., Borzooei, R.A.: On finite \(B\)-algebra. Afr. Mat. 26(5), 825–847 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bantug, J.S., Endam, J.C.: Lagrange’s Theorem for \(B\)-algebras. Int. J. Algebra 11(1), 15–23 (2017)CrossRefGoogle Scholar
  5. 5.
    Cho, J.R., Kim, H.S.: On \(B\)-algebras and quasigroups. Quasigroups Relat. Syst. 8, 1–6 (2001)MathSciNetMATHGoogle Scholar
  6. 6.
    Endam, J.C., Vilela, J.P.: The second isomorphism theorem for \(B\)-algebras. Appl. Math. Sci. 8(38), 1865–1872 (2014)MathSciNetGoogle Scholar
  7. 7.
    Endam, J.C.: Centralizer and normalizer of \(B\)-algebras. Sci. Math. Japonicae. Online e-2016-11 (2016)Google Scholar
  8. 8.
    Gonzaga, N.C., Vilela, J.P.: On cyclic \(B\)-algebras. Appl. Math. Sci. 9(111), 5507–5522 (2015)Google Scholar
  9. 9.
    Imai, Y., Iséki, K.: On axiom systems of propositional calculi. XIV. Proc. Japan Acad. 42, 19–22 (1966)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Iséki, K.: An algebra related with a propositional calculus. Proc. Japan Acad. 42, 26–29 (1966)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kamali Ardekani, L., Davvaz, B.: On \((f, g)\)-derivations of \(B\)-algebras. Mat. Vesnik 66(2), 125–132 (2014)MathSciNetMATHGoogle Scholar
  12. 12.
    Kim, H.S., Park, H.G.: On \(0\)-commutative \(B\)-algebras. Sci. Math. Japonicae 62, 31–36 (2005)MATHGoogle Scholar
  13. 13.
    Neggers, J., Kim, H.S.: A fundamental theorem of \(B\)-homomorphism for \(B\)-algebras. Int. Mat. J. 2(3), 207–214 (2002)MathSciNetMATHGoogle Scholar
  14. 14.
    Neggers, J., Kim, H.S.: On \(B\)-algebras. Mat. Vesnik 54, 21–29 (2002)MathSciNetMATHGoogle Scholar
  15. 15.
    Soleimani, R., Jahangiri, S.: A note on \(t\)-derivations of \(B\)-algebras. J. Math. Comput. Sci. 10(2), 138–143 (2014)Google Scholar
  16. 16.
    Walendziak, A.: A note on normal subalgebras in \(B\)-algebras. Sci. Math. Japonicae 49–53 (2005)Google Scholar
  17. 17.
    Walendziak, A.: Some axiomatizations of \(B\)-algebras. Math. Slovaca 56, 301–306 (2006)MathSciNetMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsPayame Noor University (PNU)TehranIran

Personalised recommendations