Afrika Matematika

, Volume 29, Issue 1–2, pp 211–221 | Cite as

On the long-time behavior of a nonlinear damped porous thermoelastic system with second sound



In this paper, we consider a porous thermoelastic system with a micro-heat dissipation and a nonlinear frictional damping. We establish an explicit and general decay rate result, using some properties of the convex functions and the multiplier method. Our result is obtained without imposing any restrictive growth assumption on the damping term.


General decay Nonlinear Damping Thermoelasticity Second sound 



The author thanks KFUPM for its continuous support.


  1. 1.
    Quintanilla, R.: Slow decay in one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16, 487–491 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Res. Commun. 32, 652–658 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Casas, P.S., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43, 33–47 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Magana, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43, 3414–3427 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Pamplona, P.X., Muñoz Rivera, J.E., Quintanilla, R.: Stabilization in elastic solids with voids. J. Math. Anal. Appl. 350, 37–49 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Magana, A., Quintanilla, R.: On the time decay of solutions in porous-elasticity with quasi-static microvoids. J. Math. Anal. Appl. 331(1), 617–630 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Muñoz Rivera, J.E., Quintanilla, R.: On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl. 338, 1296–1309 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Messaoudi, S.A., Fareh, A.: Exponential decay for linear damped porous thermoelastic systems with second sound. Discret. Cont. Dyn. Sys. B 20(2), 599–612 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Muñoz Rivera, J.E., Racke, R.: Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability. J. Math. Anal. Appl 276, 248–278 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Guesmia, A., Messaoudi, S.A., Wehbe, A.: Uniform decay in mildly damped Timoshenko system with non-equal wave speed propagation. Dyn. Syst. Appl. 21, 133–146 (2012)MathSciNetMATHGoogle Scholar
  11. 11.
    Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44, 249–266 (1972)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Soufyane, A.: Energy decay for porous-thermo-elasticity systems of memory type. Appl. Anal. 87(4), 451–464 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Soufyane, A., Afilal, M., Chacha, M. Boundary stabilization of memory type for the porous-thermo-elasticity system. Abstr. Appl. Anal. 17. (2009). (Art. ID 280790). doi: 10.1155/2009/280790
  15. 15.
    Soufyane, A., Afilal, M., Aouam, M., Chacha, M.: General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type. Nonlinear Anal. 72, 3903–3910 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pamplona, P.X., Muñoz Rivera, J.E., Quintanilla, R.: On the decay of solutions for porous-elastic systems with history. J. Math. Anal. Appl. 379(2), 682–705 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)CrossRefMATHGoogle Scholar
  18. 18.
    Cowin, S.C.: The viscoelastic behavior of linear elastic materials with voids. J. Elast. 15, 185–191 (1985)CrossRefMATHGoogle Scholar
  19. 19.
    Ieasan, D., Quintanilla, R.: On thermoelastic bodies with inner structure and microtemperatures. J. Math. Anal. Appl. 354(1), 12–23 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Magana, A., Quintanilla, R.: On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymptot. Anal. 49, 173–187 (2006)MathSciNetMATHGoogle Scholar
  21. 21.
    Dafermos, C.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)MathSciNetMATHGoogle Scholar
  23. 23.
    Messaoudi, S.A., Pokojovy, M., SaidHouari, B.: Nonlinear damped Timoshenko systems with second sound-global existence and exponential stability. Math. Methods Appl. Sci. 32(5), 505534 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Apalara, T.A., Messaoudi, S.A., Keddi, A.A.: On the decay rates of Timoshenko system with second sound. Math. Methods Appl. Sci. doi: 10.1002/mma.3720
  25. 25.
    Santos, M., Campelo, A., Júnior, D.A.: On the decay rates of porous elastic systems. J. Elast. 127, 79101 (2017). doi: 10.1007/s10659-016-9597-y MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. Wiley, Paris (1994)MATHGoogle Scholar
  27. 27.
    Arnold, V.: Mathemtical Methods of Classical Mechanics. Springer, New York (1989)CrossRefGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.The Preparatory Year Program, Department of MathematicsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations