Afrika Matematika

, Volume 29, Issue 1–2, pp 137–147 | Cite as

Calculations of the drag coefficient of circular, square and rectangular cylinders using the lattice Boltzmann method with variable lattice speed of sound



In this work, we studied the calculation of the drag coefficient using the lattice Boltzmann method with variable lattice speed of sound. The modified method of calculation the drag coefficient that includes the kinematic viscosity dependence was proposed. Calculations were based on the variable lattice speed of sound values that depend on the kinematic viscosity and the computational grid resolution. Shown the influence of the Reynolds number on the flow pattern and on the drag coefficient. The relation between the lattice Mach number and the computational grid resolution have been shown. The influence of the lattice Mach number on the accuracy of the numerical results was studied in detail. Shown that proposed method is more efficient because the researcher can set the kinematic viscosity of the fluid and the computational grid resolution at the same time. Therefore there is an opportunity to control the accuracy of the numerical results and the modeling time.


Boltzmann equation Lattice Viscous flow Drag coefficient Mach number Reynolds number 

Mathematics Subject Classification

65Z05 76M28 76D06 76A10 76G25 


  1. 1.
    Agrawal, T., Lin, C.: Implementation of an incompressible lattice Boltzmann model on GPU to simulate Poiseuille flow. In: Proceedings of the Fortieth National Conference on Fluid Mechanics and Fluid Power, pp. 991–995 (2013)Google Scholar
  2. 2.
    Barakos, G., Mitsoulis, E.: Numerical simulation of viscoelastic flow around a cylinder using an integral constitutive equation. J. Rheol. 39(6), 1279–1292 (1995)CrossRefGoogle Scholar
  3. 3.
    Calhoun, D.: A Cartesian grid method for solving the two-dimentional streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 176, 231–275 (2002). doi: 10.1006/jcph.2001.6970 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dennis, S.C.R., Chang, G.: Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100. J. Fluid Mech. 42, 471–489 (1970). doi: 10.1017/S0022112070001428 CrossRefMATHGoogle Scholar
  5. 5.
    Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98(4), 819–855 (1980)CrossRefMATHGoogle Scholar
  6. 6.
    Hong, X., Di, W., Yuhe, S.: Research of micro-rectangular-channel flow based on Lattice Boltzmann method. Res. J. Appl. Sci. Eng. Technol. 6(14), 2520–2525 (2013)Google Scholar
  7. 7.
    Horwitz, J.A.: Lattice Boltzmann Simulations of Multiphase Flows. University of Illinois at Urbana-Champaign (2013)Google Scholar
  8. 8.
    Kupershtokh, A.L.: Three-dimensional simulations of two-phase liquid-vapor systems on GPU using the lattice Boltzmann method. Numer. Methods Programm 13, 130–138 (2012)Google Scholar
  9. 9.
    Martinez, D.O., Matthaeus, W.H., Chen, S., Montgomery, D.C.: Comparison of spectral method and lattice Boltzmann simulations of two-dimentional hydrodynamics. Phys. Fluids. 6(3), 1285–1298 (1994)CrossRefMATHGoogle Scholar
  10. 10.
    Mohamad, A.A.: Lattice Boltzmann Method. Fundamentals and Engineering Applications with Computer Codes. Springer, London (2011)MATHGoogle Scholar
  11. 11.
    Mussa, M.: Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method. In: Proceedings of the 13th WSEAS Int. Conf. on Applied Mathematics, pp. 236–240 (2008)Google Scholar
  12. 12.
    Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)CrossRefMATHGoogle Scholar
  13. 13.
    Peruman, D.A., Kumar, V.S., Dass, A.K.: Lattice Boltzmann simulation over a circular cylinder at moderate Reynolds numbers. Therm. Sci. 18(4), 1235–1246 (2014). doi: 10.2298/TSCI110908093A CrossRefGoogle Scholar
  14. 14.
    Peruman, D.A., Kumar, V.S., Dass, A.K.: Numerical simulation of viscous flow over a square cylinder using Lattice Boltzmann Method. Math. Phys. doi: 10.5402/2012/630801 (2012)
  15. 15.
    Rettinger, C.: Fluid Flow Simulation using the Lattice Boltzmann Method with multiple relaxation times. Bachelor Thesis. Friedrich-Alexander Universuty Erlander-Nuremberg (2013)Google Scholar
  16. 16.
    Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)Google Scholar
  17. 17.
    Strang, G, Fix, G.J.: An Analysis of the Finite Element Method. Prentice Hall, USA (1973)Google Scholar
  18. 18.
    Succi, S., Benzi, R., Higuera, F.: The Lattice Boltzmann equation: a new tool for computational fluid-dynamics. Phys. D Nonlinear Phenom. 47, 219–230 (1991)CrossRefGoogle Scholar
  19. 19.
    Sucop, M.: Lattice Boltzmann Modeling. An Introduction for Geoscientists and Engineers. Springer, New York (2006)Google Scholar
  20. 20.
    Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6(4), 547–555 (1959)CrossRefMATHGoogle Scholar
  21. 21.
    Van Dyke, M.: An Album of Fluid Mechanics. The Parabolic Press, Stanford (1982)Google Scholar
  22. 22.
    Wang, L.: Direct simulation of viscous flow in a wavy pipe using the lattice Boltzmann approach. Int. J. Eng. Syst. Model. Simul. 1(1), 20–29 (2008)Google Scholar
  23. 23.
    Wolf-Gladrow, D.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models—An Introduction. Alfred Wegener Institute for Polar and Marine, Bremerhaven (2005)MATHGoogle Scholar
  24. 24.
    Yu, D., Mei, R., Luo, L., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Progress Aerosp. Sci. 39, 329–367 (2003)CrossRefGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Pryazovskyi State Technical UniversityMariupolUkraine

Personalised recommendations