Afrika Matematika

, Volume 29, Issue 1–2, pp 137–147

# Calculations of the drag coefficient of circular, square and rectangular cylinders using the lattice Boltzmann method with variable lattice speed of sound

Article

## Abstract

In this work, we studied the calculation of the drag coefficient using the lattice Boltzmann method with variable lattice speed of sound. The modified method of calculation the drag coefficient that includes the kinematic viscosity dependence was proposed. Calculations were based on the variable lattice speed of sound values that depend on the kinematic viscosity and the computational grid resolution. Shown the influence of the Reynolds number on the flow pattern and on the drag coefficient. The relation between the lattice Mach number and the computational grid resolution have been shown. The influence of the lattice Mach number on the accuracy of the numerical results was studied in detail. Shown that proposed method is more efficient because the researcher can set the kinematic viscosity of the fluid and the computational grid resolution at the same time. Therefore there is an opportunity to control the accuracy of the numerical results and the modeling time.

## Keywords

Boltzmann equation Lattice Viscous flow Drag coefficient Mach number Reynolds number

## Mathematics Subject Classification

65Z05 76M28 76D06 76A10 76G25

## References

1. 1.
Agrawal, T., Lin, C.: Implementation of an incompressible lattice Boltzmann model on GPU to simulate Poiseuille flow. In: Proceedings of the Fortieth National Conference on Fluid Mechanics and Fluid Power, pp. 991–995 (2013)Google Scholar
2. 2.
Barakos, G., Mitsoulis, E.: Numerical simulation of viscoelastic flow around a cylinder using an integral constitutive equation. J. Rheol. 39(6), 1279–1292 (1995)
3. 3.
Calhoun, D.: A Cartesian grid method for solving the two-dimentional streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 176, 231–275 (2002). doi:
4. 4.
Dennis, S.C.R., Chang, G.: Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100. J. Fluid Mech. 42, 471–489 (1970). doi:
5. 5.
Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98(4), 819–855 (1980)
6. 6.
Hong, X., Di, W., Yuhe, S.: Research of micro-rectangular-channel flow based on Lattice Boltzmann method. Res. J. Appl. Sci. Eng. Technol. 6(14), 2520–2525 (2013)Google Scholar
7. 7.
Horwitz, J.A.: Lattice Boltzmann Simulations of Multiphase Flows. University of Illinois at Urbana-Champaign (2013)Google Scholar
8. 8.
Kupershtokh, A.L.: Three-dimensional simulations of two-phase liquid-vapor systems on GPU using the lattice Boltzmann method. Numer. Methods Programm 13, 130–138 (2012)Google Scholar
9. 9.
Martinez, D.O., Matthaeus, W.H., Chen, S., Montgomery, D.C.: Comparison of spectral method and lattice Boltzmann simulations of two-dimentional hydrodynamics. Phys. Fluids. 6(3), 1285–1298 (1994)
10. 10.
Mohamad, A.A.: Lattice Boltzmann Method. Fundamentals and Engineering Applications with Computer Codes. Springer, London (2011)
11. 11.
Mussa, M.: Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method. In: Proceedings of the 13th WSEAS Int. Conf. on Applied Mathematics, pp. 236–240 (2008)Google Scholar
12. 12.
Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)
13. 13.
Peruman, D.A., Kumar, V.S., Dass, A.K.: Lattice Boltzmann simulation over a circular cylinder at moderate Reynolds numbers. Therm. Sci. 18(4), 1235–1246 (2014). doi:
14. 14.
Peruman, D.A., Kumar, V.S., Dass, A.K.: Numerical simulation of viscous flow over a square cylinder using Lattice Boltzmann Method. Math. Phys. doi: (2012)
15. 15.
Rettinger, C.: Fluid Flow Simulation using the Lattice Boltzmann Method with multiple relaxation times. Bachelor Thesis. Friedrich-Alexander Universuty Erlander-Nuremberg (2013)Google Scholar
16. 16.
Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)Google Scholar
17. 17.
Strang, G, Fix, G.J.: An Analysis of the Finite Element Method. Prentice Hall, USA (1973)Google Scholar
18. 18.
Succi, S., Benzi, R., Higuera, F.: The Lattice Boltzmann equation: a new tool for computational fluid-dynamics. Phys. D Nonlinear Phenom. 47, 219–230 (1991)
19. 19.
Sucop, M.: Lattice Boltzmann Modeling. An Introduction for Geoscientists and Engineers. Springer, New York (2006)Google Scholar
20. 20.
Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6(4), 547–555 (1959)
21. 21.
Van Dyke, M.: An Album of Fluid Mechanics. The Parabolic Press, Stanford (1982)Google Scholar
22. 22.
Wang, L.: Direct simulation of viscous flow in a wavy pipe using the lattice Boltzmann approach. Int. J. Eng. Syst. Model. Simul. 1(1), 20–29 (2008)Google Scholar
23. 23.
Wolf-Gladrow, D.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models—An Introduction. Alfred Wegener Institute for Polar and Marine, Bremerhaven (2005)
24. 24.
Yu, D., Mei, R., Luo, L., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Progress Aerosp. Sci. 39, 329–367 (2003)

© African Mathematical Union and Springer-Verlag GmbH Deutschland 2017

## Authors and Affiliations

1. 1.Pryazovskyi State Technical UniversityMariupolUkraine