Afrika Matematika

, Volume 29, Issue 1–2, pp 29–32 | Cite as

On the class of metrics g on \({\mathbb {S}}^2\times {\mathbb {S}}^2\) conformal to the standard metric \(g_0\) induced by \({\mathbb {R}}^6\) and the Hopf conjecture

Article
  • 26 Downloads

Abstract

The aim of this work is to prove that Hopf conjecture is true on the class of metrics g on \(M={\mathbb {S}}^2\times {\mathbb {S}}^2\) conformal to the standard metric \(g_0\) induced by \({\mathbb {R}}^6\) on M.

Keywords

Sectional cuvature Conformal metrics Hopf conjecture 

Mathematics Subject Classification

53B25 53C40 

References

  1. 1.
    Aubin, T.: Some Non Linear Problema in Riemannian Geometry. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Hullin, D., Lafontaine, J.: Riemannian Geometry, 2nd edn. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Kennard, L.: On the Hopf conjecture with symmetry. Geom. Topol. 1A (2003)Google Scholar
  4. 4.
    Niang, A., Sarr, A.: Une remarque sur une note autour de la conjecture de Hopf. Departement de Mathématiques et Informatique, Université Cheikh Anta Diop de Dakar, Sénégal (2014)Google Scholar
  5. 5.
    O’neil, B.: Semi-riemannian Geometry. Department of mathematics University of California Los Angeles, California (1983)Google Scholar
  6. 6.
    Perdomo, O.: A note on Hopf’s conjecture. Universidad del Vale-Colombia, http://www.univalle.edu.co/~osperdom/hopfconj.pdf
  7. 7.
    Perdomo, O.: Graficasde functions sobre variedades. Math. Ensen. Univ., X(1) (2004)Google Scholar
  8. 8.
    Yamabe, H.: On a deformation of Riemannian structures on compact manifold. Osuka Math. 12, 21–37 (1960). (Semi-riemannian geometry)MathSciNetMATHGoogle Scholar
  9. 9.
    Kulkarni, R.S.: Curvature structures and conformal transformations. J. Diff. Geom. 4, 425–456 (1969)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Laboratoire Géométrie et Applications (LGA), Département de Mathématiques et Informatique, Faculté des Sciences et TechniqueUniversité Cheikh Anta Diop de DakarDakarSenegal

Personalised recommendations