Advertisement

Afrika Matematika

, Volume 29, Issue 1–2, pp 23–27 | Cite as

The Euler transform of V-function

  • Virendra Kumar
Article

Abstract

In the present paper the Euler transform of the V-function is obtained. The main result provides useful extension and unification of a number of (known or new) results for various special cases of the V-function. For the sake of illustration, some special cases of the main result are mentioned.

Keywords

Euler transform V-function Generalized hypergeometric function Bessel function Generalized Mittag-Leffler function Struve’s function Lommel’s function 

Mathematics Subject Classification

44A20 33C10 33C20 33E12 33E20 

Notes

Acknowledgements

The author is extremely thankful to the worthy referee for suggestions given for the improvement of the paper.

References

  1. 1.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. I. McGraw Hill Book company, New York (1953a)MATHGoogle Scholar
  2. 2.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. McGraw Hill Book company, New York (1953b)MATHGoogle Scholar
  3. 3.
    Exton, H.: Handbook of Hypergeometric Integrals. Ellis Horwood Ltd., Chichester (1978)MATHGoogle Scholar
  4. 4.
    Goyal, S.P., Laddha, R.K.: On the generalized Riemann zeta function and the generalized Lambert\(^{\prime }\)s transform. Ganita Sandesh. 11(2), 99–108 (1997)MathSciNetMATHGoogle Scholar
  5. 5.
    Humbert, P., Agarwal, R.P.: Sur la fonction de Mittag-Leffler et quelques unes de ses généralisations. Bull. Sci. Math. 77(2), 180–185 (1953)MathSciNetMATHGoogle Scholar
  6. 6.
    Kumar, V.: A general class of functions and \(N\)-fractional calculus. J. Rajasthan Acad. Phys. Sci. 11(3), 223–230 (2012)MathSciNetMATHGoogle Scholar
  7. 7.
    Kumar, V.: \(N\)-fractional calculus of general class of functions and fox\(^{\prime }\)s \(H\)-function. Proc. Natl. Acad. Sci. Sect. A Phys. Sci. 83(3), 271–277 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Mittag-Leffler, G.: Sur la nouvelle fonction \(E_{\alpha }(x)\). C.R. Acad. Sci. Paris 137, 554–558 (1903)MATHGoogle Scholar
  9. 9.
    Saxena, R.K., Daiya, J., Singh, A.: Integral transformations of the \(k\)-generalized Mittag-Leffler function \(E_{k, \alpha, \beta }^{\gamma, \tau }\) (z). Le Matematiche. LXIX, 7–16 (2014)MATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  1. 1.Formerly Scientist-B, DRDO, IndiaGhaziabadIndia

Personalised recommendations