Skip to main content
Log in

Third derivative hybrid block integrator for solution of stiff systems of initial value problems

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

A new third derivative hybrid block method is presented for the solution of first order stiff systems of initial value problems. The main method and additional methods are obtained from the same continuous scheme derived via interpolation and collocation procedures using power series as the basis function. The continuous representation of the scheme permits us to evaluate at both grid and off-grid points. The stability properties of the method is discussed. The block method is applied simultaneously to generate the numerical solutions of (1) over non-overlapping intervals. Numerical results obtained using the proposed third derivative hybrid method in block form reveal that it compares favorably well with existing methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Henrici, P.: Discrete Variable Methods in ODEs. Wiley, New York (1962)

    MATH  Google Scholar 

  2. Jackson, L.W., Kenue, S.K.: A fourth order exponentially fitted method. SIAM J. Numer. Anal. 11, 965–978 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akinfenwa, A., Yao, N.M., Jator, S.N.: A Self Starting Block Adams Methods for solving stiff Ordinary Differential Equation. In: The 14th IEEE International Conference on Computational Science and Engineering CSE/I-SPAN/IUCC, pp. 127–136 (2011)

  5. Akinfenwa, O., Jator, S., Yoa, N.: Eight order backward differentiation formula with continuous coefficients for stiff ordinary differential equations. Int. J. Math. Comput. Sci. 17(4), 172–176 (2011)

    Google Scholar 

  6. Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A continuous hybrid method for solving parabolic PDEs. AMSE J. Adv. Model. A Gen. Math. 48, 17–27 (2011)

    Google Scholar 

  7. Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A seventh-order hybrid multistep integrator for second order ordinary differential equations far east. J. Math. Sci. 56(1), 43–56 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A linear multistep hybrid methods with continuous coefficient for solving stiff ordinary differential equation. J. Mod. Math. Stat. 5, 47–53 (2011)

    Article  MathSciNet  Google Scholar 

  9. Akinfenwa, O.A., Jator, S.N., Okunuga, S.A., Sofoluwe, A.B.: A one step hybrid multistep method with two off-step points for solution of second order ordinary differential equations. Int. J. Comput. Appl. Math. 7(3), 235–247 (2012)

    Google Scholar 

  10. Gear, C.W.: Hybrid methods for initial value problems in ordinary differential equations. SIAM J. Numer. Anal. 2, 69–86 (1965)

    MathSciNet  MATH  Google Scholar 

  11. Gragg, W., Stetter, H.J.: Generalized multistep predictor-corrector methods. J. Assoc. Comput. Mach. 11, 188–209 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Butcher, J.C.: A modified multistep method for the numerical integration of ordinary differential equations. J. Assoc. Comput. Mach. 12, 124–135 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1973)

    MATH  Google Scholar 

  14. Kohfeld, J.J., Thompson, G.T.: Multistep methods with modified pre- dictors and correctors. J. Assoc. Comput. Mach. 14, 155–166 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  15. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gupta, G.K.: Implementing second-derivative multistep methods using Nordsieck polynomial representation. Math. Comp. 32, 13–18 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, New York (1996)

    Book  MATH  Google Scholar 

  18. Cash, J.R.: On the exponential fitting of composite multiderivative linear multistep methods. SIAM J. Numer. Anal. 18, 808–821 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Onumanyi, P., Awoyemi, D.O., Jator, S.N., Sirisena, U.W.: New linear mutlistep methods with continuous coefficients for first order initial value problems. J. Nig. Math. Soc. 13(1994), 37–51 (1994)

    Google Scholar 

  20. Sarafyan, D.: Multistep methods for the numerical solution of ordinary differential equations made self-starting. Tech. Report 495, Math. Res. Center, Madison (1965)

  21. Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41, 55–63 (1991)

    Article  MATH  Google Scholar 

  22. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Wiley, New York (1991)

    MATH  Google Scholar 

  23. Ixaru, L.G., Berghe, G.V., De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Baker, C.T.H., Keech, M.S.: Stability regions in the numerical treat- ment of Volterra integral equations. SIAM J. Numer. Anal. 15, 394–417 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gamal, A.F.I., Ibrahim, I.H.: A new higher order effective P-C methods for stiff systems. Math. Comput. Simul. 47, 541–552 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khalsaraei, M.M., Oskuyi, N.N., Hojjati, G.: A class of second derivative multistep methods for stiff systems. Acta Universitatis Apulensis 30, 171–188 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Yakubu, D.G., Markus, S.: Second derivative of high-order accuracy methods for the numerical integration of stiff initial value problems. Afr. Mat. doi:10.1007/s13370-015-0389-5

  28. Gear, C.W.: The automatic integration of stiff ordinary differential equations. Inf. Process. 68, 187–193 (1969)

    MathSciNet  MATH  Google Scholar 

  29. Cash, J.R.: Second derivative extended backward differentiation formulas for numerical integration of stiff systems. SIAM J. Numer. Anal. 18(1), 21–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chartier, P.: \(L\)-Stable parallel one-block methods for ordinary differential equations. SIAM J. Numer. Anal. 31, 552–571 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olusheye Akinfenwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinfenwa, O. Third derivative hybrid block integrator for solution of stiff systems of initial value problems. Afr. Mat. 28, 629–641 (2017). https://doi.org/10.1007/s13370-016-0471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-016-0471-7

Keywords

Mathematics Subject Classification

Navigation