Afrika Matematika

, Volume 28, Issue 3–4, pp 629–641 | Cite as

Third derivative hybrid block integrator for solution of stiff systems of initial value problems

Article
  • 42 Downloads

Abstract

A new third derivative hybrid block method is presented for the solution of first order stiff systems of initial value problems. The main method and additional methods are obtained from the same continuous scheme derived via interpolation and collocation procedures using power series as the basis function. The continuous representation of the scheme permits us to evaluate at both grid and off-grid points. The stability properties of the method is discussed. The block method is applied simultaneously to generate the numerical solutions of (1) over non-overlapping intervals. Numerical results obtained using the proposed third derivative hybrid method in block form reveal that it compares favorably well with existing methods in the literature.

Keywords

Block hybrid method Off-step points Collocation and interpolation Stability 

Mathematics Subject Classification

65L05 65L06 

References

  1. 1.
    Henrici, P.: Discrete Variable Methods in ODEs. Wiley, New York (1962)MATHGoogle Scholar
  2. 2.
    Jackson, L.W., Kenue, S.K.: A fourth order exponentially fitted method. SIAM J. Numer. Anal. 11, 965–978 (1974)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Akinfenwa, A., Yao, N.M., Jator, S.N.: A Self Starting Block Adams Methods for solving stiff Ordinary Differential Equation. In: The 14th IEEE International Conference on Computational Science and Engineering CSE/I-SPAN/IUCC, pp. 127–136 (2011)Google Scholar
  5. 5.
    Akinfenwa, O., Jator, S., Yoa, N.: Eight order backward differentiation formula with continuous coefficients for stiff ordinary differential equations. Int. J. Math. Comput. Sci. 17(4), 172–176 (2011)Google Scholar
  6. 6.
    Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A continuous hybrid method for solving parabolic PDEs. AMSE J. Adv. Model. A Gen. Math. 48, 17–27 (2011)Google Scholar
  7. 7.
    Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A seventh-order hybrid multistep integrator for second order ordinary differential equations far east. J. Math. Sci. 56(1), 43–56 (2011)MathSciNetMATHGoogle Scholar
  8. 8.
    Akinfenwa, O.A., Jator, S.N., Yao, N.M.: A linear multistep hybrid methods with continuous coefficient for solving stiff ordinary differential equation. J. Mod. Math. Stat. 5, 47–53 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Akinfenwa, O.A., Jator, S.N., Okunuga, S.A., Sofoluwe, A.B.: A one step hybrid multistep method with two off-step points for solution of second order ordinary differential equations. Int. J. Comput. Appl. Math. 7(3), 235–247 (2012)Google Scholar
  10. 10.
    Gear, C.W.: Hybrid methods for initial value problems in ordinary differential equations. SIAM J. Numer. Anal. 2, 69–86 (1965)MathSciNetMATHGoogle Scholar
  11. 11.
    Gragg, W., Stetter, H.J.: Generalized multistep predictor-corrector methods. J. Assoc. Comput. Mach. 11, 188–209 (1964)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Butcher, J.C.: A modified multistep method for the numerical integration of ordinary differential equations. J. Assoc. Comput. Mach. 12, 124–135 (1965)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1973)MATHGoogle Scholar
  14. 14.
    Kohfeld, J.J., Thompson, G.T.: Multistep methods with modified pre- dictors and correctors. J. Assoc. Comput. Mach. 14, 155–166 (1967)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gupta, G.K.: Implementing second-derivative multistep methods using Nordsieck polynomial representation. Math. Comp. 32, 13–18 (1978)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, New York (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Cash, J.R.: On the exponential fitting of composite multiderivative linear multistep methods. SIAM J. Numer. Anal. 18, 808–821 (1981)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Onumanyi, P., Awoyemi, D.O., Jator, S.N., Sirisena, U.W.: New linear mutlistep methods with continuous coefficients for first order initial value problems. J. Nig. Math. Soc. 13(1994), 37–51 (1994)Google Scholar
  20. 20.
    Sarafyan, D.: Multistep methods for the numerical solution of ordinary differential equations made self-starting. Tech. Report 495, Math. Res. Center, Madison (1965)Google Scholar
  21. 21.
    Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41, 55–63 (1991)MATHCrossRefGoogle Scholar
  22. 22.
    Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Wiley, New York (1991)MATHGoogle Scholar
  23. 23.
    Ixaru, L.G., Berghe, G.V., De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Baker, C.T.H., Keech, M.S.: Stability regions in the numerical treat- ment of Volterra integral equations. SIAM J. Numer. Anal. 15, 394–417 (1978)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gamal, A.F.I., Ibrahim, I.H.: A new higher order effective P-C methods for stiff systems. Math. Comput. Simul. 47, 541–552 (1998)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Khalsaraei, M.M., Oskuyi, N.N., Hojjati, G.: A class of second derivative multistep methods for stiff systems. Acta Universitatis Apulensis 30, 171–188 (2012)MathSciNetMATHGoogle Scholar
  27. 27.
    Yakubu, D.G., Markus, S.: Second derivative of high-order accuracy methods for the numerical integration of stiff initial value problems. Afr. Mat. doi: 10.1007/s13370-015-0389-5
  28. 28.
    Gear, C.W.: The automatic integration of stiff ordinary differential equations. Inf. Process. 68, 187–193 (1969)MathSciNetMATHGoogle Scholar
  29. 29.
    Cash, J.R.: Second derivative extended backward differentiation formulas for numerical integration of stiff systems. SIAM J. Numer. Anal. 18(1), 21–36 (1981)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Chartier, P.: \(L\)-Stable parallel one-block methods for ordinary differential equations. SIAM J. Numer. Anal. 31, 552–571 (1994)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of LagosLagosNigeria

Personalised recommendations