Afrika Matematika

, Volume 28, Issue 3–4, pp 443–450 | Cite as

Numerical approximations of second order PDEs by boundary value methods and the method of lines

  • T. A. Biala
  • S. N. Jator
  • R. B. Adeniyi


In this work, we study the performance of boundary value methods (BVMs) discussed in Biala [10] and Biala et al. [11] in combination with the method of lines on second order PDEs. The method of lines converts the PDEs into an equivalent system of second order ordinary differential equations. The performance of BVMs on the semi-discretized system is evidenced by a few numerical examples.


Second order PDEs Boundary value methods Method of lines Nonlinear PDEs 

AMS Subject Classification

65M12 65M20 65L05 65L06 


  1. 1.
    Brugnano, L., Trigiante, D.: Solving differential problems by multistep initial and boundary value problems. Gordon and Breach Science Publishers (1998)Google Scholar
  2. 2.
    Brugnano, L., Trigiante, D.: Higher order multistep methods for boundary value problems. Appl. Numer. Math. 18, 79–94 (1995)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brugnano, L., Trigiante, D.: Stability properties of some BVM methods. Appl. Numer. Math. 13, 291–304 (1993)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Amodio, P., Mazzia, F.: A boundary value approach to the numerical solution of initial value problems by multistep methods. J. Differ. Equ. Appl. 1, 353–367 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Amodio, P., Brugnano, L.: Parallel implementation of block boundary value methods for ODEs. J. Comput. Math. Appl. 78, 197–211 (1997)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Amodio, P., Iavernaro, F.: Symmetric boundary value methods for second initial and boundary value problems. Mediterr. J. Maths. 3, 383–398 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hamdi, S, Schiesser, W.E., Griffiths, G.W.: Method of lines (2007)
  8. 8.
    Schiesser, W.E., Griffiths, G.W.: A compendium of partial differential equation models: method of lines analysis with matlab. Cambridge University Press (2009)Google Scholar
  9. 9.
    Samuel, J.: Block unification scheme for elliptic, telegraph and sine-gordon partial differential equations. American Journal of Computational Mathematics 5:175-185 (2015). doi: 10.4236/ajcm.2015.52014
  10. 10.
    Biala, T.A.: A computational study of the boundary value methods and the block unification methods for y\(\prime \prime \) = f(x, y, y\(\prime \)), Abstract and Applied Analysis 8465103:14 (2016). doi: 10.1155/2016/8465103
  11. 11.
    Biala, T.A., Jator, S.N., Adeniyi, R.B.: On a class of boundary value methods for the general second order initial and boundary value problems (submitted)Google Scholar
  12. 12.
    Siyyam, H.I., Syam, M.I.: An accurate solution of the Poisson equation by the Chebyshev-Tau method. J. Comp. Appl. Math 85, 1–10 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Volkov, E.A., Dosiyev, A.A., Buranay, S.C.: On the solution of a nonlocal problem. Comp. Math. Appl. 66, 330–338 (2013)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wang, Bin, Liu, Kai, Xinyuan, Wu: A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems. J. Comp. Phys. 243, 210–223 (2013)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Aceto, L., Ghelardoni, P., Magherini, C.: PGSCM: a family of P-stable Boundary value methods for second order initial value problems. J. Comput. Appl. Math. 236, 3857–3868 (2012)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceSule Lamido UniversityKafin HausaNigeria
  2. 2.Department of Mathematics and StatisticsAustin Peay State UniversityClarksvilleUSA
  3. 3.Department of MathematicsUniversity of IlorinIlorinNigeria

Personalised recommendations