Afrika Matematika

, Volume 28, Issue 3–4, pp 333–356 | Cite as

Stable equilibrium configuration of two bar truss by an efficient nonmonotone global Barzilai–Borwein gradient method in a fuzzy environment

  • Hadi Nosratipour
  • Omid Solaymani Fard
  • Akbar Hashemi Borzabadi
  • Farhad Sarani


The stable equilibrium configuration of structures is a main goal in structural optimization. This goal may be achieved through minimizing the potential energy function. In the real world, sometimes, the input data and parameters of structural engineering design problems may be considered as fuzzy numbers which lead us to develop structural optimization methods in a fuzzy environment. In this regard, the present paper is intended to propose a fuzzy optimization scheme according to the nonmonotone globalization technique, the Barzilai–Borwein (BB) gradient method and the generalized Hukuhara differentiability (gH-differentiability). In fact, using the best benefits of BB-like methods i.e., simplicity, efficiency and low memory requirements, a modified global Barzilai–Borwein (GBB) gradient method is proposed for obtaining a non-dominated solution of the unconstrained fuzzy optimization related to the two bar asymmetric shallow truss in a fuzzy environment. The global convergence to first-order stationary points is also proved and the R-linear convergence rate is established under suitable assumptions. Furthermore, some numerical examples are given to illustrate the main results.


Unconstrained fuzzy optimization Truss Generalized Hukuhara differentiability Nonmonotone line search Barzilai–Borwein gradient method 

Mathematics Subject Classification

80M50 94D05 90C52 


  1. 1.
    Akaike, H.: On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Stat. Math. 11, 1–17 (1959)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Amini, K., Ahookhosh, M., Nosratipour, H.: An inexact line search approach using modified nonmonotone strategy for unconstrained optimization. Numer. Algorithm 66, 49–78 (2014)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ban, A.I., Bede, B.: Properties of the cross product of fuzzy numbers. J. Fuzzy Math. 14, 513–531 (2006)MathSciNetMATHGoogle Scholar
  4. 4.
    Barzilai, B., Borwein, J.M.: Methods of conjugate gradients for solving linear systems. IMA J. Numer. Anal. 8, 141–148 (1988)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ban, A.I., Bede, B.: Properties of the cross product of fuzzy numbers. J. Fuzzy Math. 14, 513–531 (2006)MathSciNetMATHGoogle Scholar
  6. 6.
    Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151, 581–599 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Birgin, E.G., Chambouleyron, I., Martinez, J.M.: Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comput. Phys. 151, 862–880 (1999)MATHCrossRefGoogle Scholar
  10. 10.
    Buckley, J.J., Abdalla, A.: Monte Carlo methods in fuzzy queuing theory. Soft Comput. 13, 1027–1033 (2009)MATHCrossRefGoogle Scholar
  11. 11.
    Cadenas, J.M., Verdegay, J.L.: Towards a new strategy for solving fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 8, 231–244 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chalco-Cano, Y., Rufián-Lizana, A., Román-Flores, H., Jiménez-Gamero, M.D.: Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 219, 49–67 (2013)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chalco-Cano, Y., Silva, G.N., Rufián-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dai, Y.H., Fletcher, R.: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. Math. Prog. 106, 403–421 (2006)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dai, Y.H.: On the nonmonotone line search. J. Optim. Theory Appl. 112(2), 315–330 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Diamond, P., Kloeden, P.E.: Meric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore (1994)MATHCrossRefGoogle Scholar
  18. 18.
    Diamond, P.: Stability and periodicity in fuzzy differential equations. IEEE Trans. Fuzzy Syst. 8(5), 583–590 (2000)MATHCrossRefGoogle Scholar
  19. 19.
    Fletcher, R.: Low storage methods for unconstrained optimization. Lect. Appl. Math. 26, 165–179 (1999)MathSciNetGoogle Scholar
  20. 20.
    Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem. 14, 114–120 (1993)CrossRefGoogle Scholar
  21. 21.
    Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Grippo, L., Sciandrone, M.: Nonmonotone globalization techniques for the Barzilai–Borwein gradient method. Comput. Optim. Appl. 23, 143–169 (2002)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Guo, P. Tanaka, H.: Fuzzy decision in possibility programming problems. In Proceedings of Asian Fuzzy System Symposium, pp. 278–283 (1996)Google Scholar
  24. 24.
    Hanss, M.: Applied Fuzzy Arithmetic. Springer, New York (2005)MATHGoogle Scholar
  25. 25.
    Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Hukuhara, M.: Integration des applications measurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)MathSciNetMATHGoogle Scholar
  27. 27.
    Jung, C.Y., Pulmano, V.A.: Improved fuzzy linear programming model for structural designs. Comput. Struct. 58, 471–477 (1996)MATHCrossRefGoogle Scholar
  28. 28.
    Liu, W.B., Dai, Y.H.: Minimization algorithms based on supervisor and searcher cooperation. J. Optim. Theory Appl. 111, 359–379 (2001)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lodwick, W.A., Bachman, K.A.: Solving large-scale fuzzy and possibilistic optimization problems. Fuzzy Optim. Decis. Mak. 4(4), 257–278 (2005)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Lodwick, W.A., Jamison, K.D.: Theoretical and semantic distinctions of fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization. Fuzzy Sets Syst. 158(17), 1861–1872 (2007)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Lodwick, W.A.: The relationship between interval, fuzzy and possibilistic optimization. Model. Decis. Artif. Intell. 5861, 55–59 (2009)MATHCrossRefGoogle Scholar
  32. 32.
    Pathak, V.D., Pirzada, U.M.: The optimality conditions for fuzzy optimization problem under the concept of generalized convexity. Adv. Appl. Math. Anal. 1, 23–38 (2010)Google Scholar
  33. 33.
    Pirzada, U.M., Pathak, V.D.: Newton method for solving the multi-variable fuzzy optimization problem. J. Optim. Theory Appl. 156, 867–881 (2013)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91, 552–558 (1983)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    RamiK, J., Rimanek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16, 123–138 (1985)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Ramik, J., Vlach, M.: Fuzzy mathematical programming: a unified approach based on fuzzy relation. Fuzzy Optim. Decis. Mak. 1, 335–346 (2002)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Rao, S.S.: Description and optimum design of fuzzy mathematical systems. J. Mech. Trans. Autom. Des. 109, 126–132 (1987)CrossRefGoogle Scholar
  38. 38.
    Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Saito, S., Ishii, H.: L-fuzzy optimization problems by parametric representation. IEEE, N Y 1173–1177 (2001). doi: 10.1109/ICSMC.2001.973078
  40. 40.
    Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for quadratic programs and applications in training support vector machines. Optim. Methods Softw. 20, 353–378 (2005)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Wu, H.-C.: An \((\alpha,\beta )\)-optimal solution concept in fuzzy optimization problems. Optimization 53, 203–221 (2004)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wu, H.-C.: Duality theory in fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 3, 345–365 (2004)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Wu, H.-C.: Fuzzy optimization problemsbased on the embedding theorem and possibility and necessity measures. Math. Comput. Model. 40(3), 329–336 (2004)MATHCrossRefGoogle Scholar
  44. 44.
    Wu, H.-C.: The Karush–Kuhn–Tucker optimality conditions for optimization problems with fuzzy valued objective functions. Math. Methods Oper. Res. 66, 203–224 (2007)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Wu, H.-C.: The optimality conditions for optimization problems with fuzzy-valued objective functions. Optimization 57, 473–489 (2008)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Xu, C.: Fuzzy optimization of structures by the two-phase method. Comput. Struct. 31(4), 575–580 (1989)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Yeh, Y.C., Hsu, D.S.: Structural optimization with fuzzy parameters. Comput. Struct. 37(6), 917–924 (1990)CrossRefGoogle Scholar
  48. 48.
    Zadeh, L.A.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control. 8, 59–60 (1963)CrossRefGoogle Scholar
  49. 49.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MATHCrossRefGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hadi Nosratipour
    • 1
  • Omid Solaymani Fard
    • 1
  • Akbar Hashemi Borzabadi
    • 1
  • Farhad Sarani
    • 1
  1. 1.Department of Applied Mathematics, School of Mathematics and Computer ScienceUniversity of DamghanDamghanIran

Personalised recommendations